首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Understanding Quantitative Relationship between Methane Storage Capacities and Characteristic Properties of Metal-Organic Frameworks Based on Machine Learning
【24h】

Understanding Quantitative Relationship between Methane Storage Capacities and Characteristic Properties of Metal-Organic Frameworks Based on Machine Learning

机译:基于机器学习了解金属有机框架甲烷储存能力与特征性能的定量关系

获取原文
获取原文并翻译 | 示例
           

摘要

Metalorganic frameworks (MOFs) are one category of emerging porous materials, which are promising competitors applied in gas storage and separation due to their high porosity and high surface area. It is still time consuming to search for optimal materials for methane storage from a large number of candidates by traditional methods such as molecular simulations and quantum mechanics. Recently, machine learning (ML) algorithms were gradually used to accelerate the discovery of high-performance MOFs. In this work, Henrys coefficient besides other characteristic parameters was computed and appended into the previously reported data set of hypothetical metalorganic frameworks (hMOFs) for methane storage. The new data set with 37 features and 130 397 samples was then randomly split into a training set and a test set in the ratio of 7:3, which were applied for ML training and testing with three different algorithms, including support vector machine, random forest regression (RFR), and gradient boosting regression tree (GBRT). The results indicate that the GBRT model demonstrates the best generalization ability to predict nontrained data set, whereas the RFR model results in the best predictive power in the training set. The analysis of feature importance from machine learning algorithms confirms that the high generalization ability of the GBRT model is attributed to the model extracting more information from a wider range of features. The RFR model results in the highest prediction accuracy with Pearson correlation coefficient (r(2)) of 0.9984 and root mean square error (RMSE) of 3.93 in the training set of absolute gravimetric uptakes. The GBRT model results in the highest prediction accuracy with r(2) of 0.9908 and RMSE of 9.40 in the test set of absolute gravimetric uptakes, which is the highest prediction accuracy among the up-to-date reports. According to volumetric capacities for methane storage, the optimal hMOFs exhibit phi of 0.65-0.88, liquid-crystal display of similar to 7.5 angstrom, VSA of similar to 2250 m(2) cm(-3), etc.
机译:金属有机框架(MOFS)是一类新兴多孔材料,这是由于其高孔隙率和高表面积而在气体储存和分离中施加的竞争对手。通过传统方法搜索来自大量候选的甲烷储存的最佳材料,通过传统方法,如分子模拟和量子力学。最近,机器学习(ML)算法逐渐用于加速高性能MOF的发现。在这项工作中,亨利斯系数除了其他特征参数之外的计算和附加到先前报告的用于甲烷储存的假设金属有机框架(HMOFS)的数据集。然后将具有37个特征和130397个样本的新数据集随机分成训练集,并且以7:3的比率为比例的测试设定,其应用于ML培训和测试,包括三种不同的算法,包括支持向量机,随机森林回归(RFR)和渐变升压回归树(GBRT)。结果表明,GBRT模型展示了预测未培训数据集的最佳概括能力,而RFR模型导致训练集中的最佳预测力。从机器学习算法的特征重要性分析证实,GBRT模型的高泛化能力归因于模型从更广泛的特征中提取更多信息。 RFR模型导致最高的预测准确性,Pearson相关系数(R(2))为0.9984,训练集中的绝对重量升高的训练组中的3.93的均线误差(RMSE)。 GBRT模型导致最高的预测精度,R(2)为0.9908和9.40中的Absolute TraveMetric Uptaker的RMSE,这是最新报告中的最高预测准确性。根据甲烷储存的体积容量,最佳的HMOFS表现出0.65-0.88的PHI,液晶显示器类似于7.5埃,VSA类似于2250米(2)厘米(-3)等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号