首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Stark Tuning Rates of Organic Carbonates Used in Electrochemical Energy Storage Devices
【24h】

Stark Tuning Rates of Organic Carbonates Used in Electrochemical Energy Storage Devices

机译:电化学能量存储装置中使用的有机碳酸盐的STARK调整速率

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Lithium ion batteries frequently employ carbonate-based electrolyte solvents to support reversible lithium ion storage in response to electric fields applied to the electrode/electrolyte junction. Although these fields are critical for controlling beneficial and deleterious electrochemical reactions alike, quantifying their magnitude is a persistent challenge that inhibits our fundamental understanding of high-voltage electrochemical energy storage devices. In this study, we utilize complementary experimental techniques of vibrational Stark spectroscopy and vibrational solvatochromism in conjunction with molecular dynamics simulations to determine the vibrational sensitivity (Stark tuning rate, Delta(mu) over right arrow) of the carbonyl group (C=O) in response to an electric field for diethyl carbonate (DEC), ethylene carbonate (EC), and fluoroethylene carbonate (FEC). We first determine that the response of the C=O group in each solvent to an externally applied electric field exhibits a second derivative line shape characteristic of the linear Stark effect. We find the magnitude of this each carbonate solvent based on a field-frequency calibration; Delta(mu) over right arrow (DEC) 0.37 cm(-1)/(MV/cm), Delta(mu) over right arrow (EC) = 0.31 cm(-1)/(MV/cm), and Delta(mu) over right arrow (FEC) = 0.57 cm(-1)/(MV/cm). We then leverage two electrostatic expressions to converge upon an angle-dependent equilibrium (open circuit) interfacial field for archetypal Li-ion battery electrode/electrolyte junctions. Based upon this convergence model, which depends explicitly on the dielectric function of the electrode interface and the projection of the field onto the dipole axis of the C=O group, we estimate local fields spanning approximately 30-50 MV/cm at LiCoO2 and 84-132 MV/cm at graphite interfaces. This quantitative benchmark of Delta(mu) over right arrow lt for some of the most commonly used electrolyte solvents lays the groundwork for proofing future electrostatic materials design strategies, for example, by controlling electrochemical reaction dynamics using extrinsic interface modifiers.
机译:锂离子电池经常使用基于碳酸盐的电解质溶剂来支持可逆锂离子储存响应于施加到电极/电解质结的电场。尽管这些领域对于控制有益和有害的电化学反应是至关重要的,但量化它们的幅度是持续的挑战,这抑制了对高压电化学能量存储装置的基本理解。在本研究中,我们与分子动力学模拟结合分子动力学模拟来利用振动缺点光谱和振动溶性溶解度的互补实验技术,以确定羰基(C = O)的振动敏感性(右箭头右箭头上的δ(mu))响应碳酸二乙酯(DEC),碳酸亚乙酯(EC)和氟乙基碳酸亚乙酯(FEC)的电场。我们首先确定C = O基团在每个溶剂中对外部施加的电场的响应表现出线性滞留效应的第二衍生线形状特征。我们发现基于场频率校准的每个碳酸盐溶剂的幅度;右箭头(DEC)右箭头(MU)0.37厘米(-1)/(MV / cm),右箭头(EC)= 0.31厘米(-1)/(MV / CM)和DELTA(穆)右箭头(FEC)= 0.57厘米(-1)/(MV / cm)。然后,我们利用两个静电表达来收敛于原型锂离子电池电极/电解质结的角度依赖性平衡(开路)界面。基于该收敛模型,这在明确地依赖于电极接口的介电函数和场的投影到C = O组的偶极轴上,我们估计在LiCoO2和84处跨越大约30-50 mV / cm的局部场石墨界面处-132 mV / cm。对于一些最常用的电解质溶剂的Δ(mu)右箭头LT的这种定量基准,例如,通过使用外在界面改性剂控制电化学反应动态来控制未来静电材料设计策略的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号