...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Temperature-Dependent Photoluminescence and Energy-Transfer Dynamics in Mn2+-Doped (C4H9NH3)(2)PbBr4 Two-Dimensional (2D) Layered Perovskite
【24h】

Temperature-Dependent Photoluminescence and Energy-Transfer Dynamics in Mn2+-Doped (C4H9NH3)(2)PbBr4 Two-Dimensional (2D) Layered Perovskite

机译:MN2 +掺杂的温度依赖的光致发光和能量转移动力学(C4H9NH3)(2)PBBR4二维(2D)层钙钛矿

获取原文
获取原文并翻译 | 示例
           

摘要

Reported here are the low-temperature photoluminescence (PL), energy-transfer mechanism, and exciton dynamics of Mn2+-doped two-dimensional (2D) perovskites that show interesting differences from their three-dimensionally doped counterpart. Dopant emission in 2D system shows increased PL intensity and shortened lifetime with increase of temperature and strong dopant emission even at low temperatures. Transient absorption (TA) spectroscopy reveals the dominant role of "hot" excitons in dictating the fast energy-transfer timescale. The operative dynamics of the generated hot excitons include filling up of existing trap states (shallow and deep) and energy-transfer channel from hot excitons to dopant states. Global analysis and target modeling of TA data provide an estimate of excitons (hot and band edge) to a dopant energy-transfer timescale of similar to 330 ps, which is much faster than the band edge exciton lifetime (similar to 2 ns). Such fast energy-transfer timescale arises due to enhanced carrier exchange interaction resulting from higher exciton confinement, increased covalency, and involvement of hot excitons in the 2D perovskites. In stark contrast to three-dimensional systems, the high energy-transfer rate in 2D system results in high dopant emission intensity even at low temperatures. Increased intrinsic vibronic coupling at higher temperatures further supports efficient Mn2+ sensitization that ultimately dictates the observed temperature dependence of the dopant emission (intensity, lifetime).
机译:这里报道的是MN2 +二维(2D)钙酯的低温光致发光(PL),能量转移机制和Exciton动态,其显示与其三维掺杂的对应物的有趣差异。 2D系统中的掺杂剂发射显示了增加的PL强度和较短的寿命,即使在低温下也会增加温度和强烈的掺杂剂发射。瞬态吸收(TA)光谱揭示的“热”激子在口述快速能量传输的时间尺度的主导作用。所产生的热激子的操作动态包括从热激子到掺杂剂状态的现有陷阱状态(浅层和深层)和能量转移通道填充。 TA数据的全局分析和目标建模提供了激发子子(热和带边)的估计,其与330 PS相似的掺杂剂能量转移时间尺度,这比带边缘寿命更快(类似于2 ns)。这种快速的能量转移秒为出现由于增强的载体交换相互作用,由较高的激子监禁,增加的共价增加和热激子在2D Perovskites中的参与。在与三维系统形成对比的情况下,即使在低温下,2D系统中的高能量传递速率导致高掺杂剂发射强度。在较高温度下增加的内在振动偶联进一步支持有效的MN2 +敏化,最终决定了观察到的掺杂剂发射的温度依赖性(强度,寿命)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号