首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Structures, Electronic States, and Reactions at Interfaces between LiNi0.5Mn1.5O4 Cathode and Ethylene Carbonate Electrolyte: A First-Principles Study
【24h】

Structures, Electronic States, and Reactions at Interfaces between LiNi0.5Mn1.5O4 Cathode and Ethylene Carbonate Electrolyte: A First-Principles Study

机译:结构,电子状态和LINI0.5MN1.5O4阴极和碳酸亚乙酯电解质之间的界面的反应:第一原理研究

获取原文
获取原文并翻译 | 示例
           

摘要

Electrolyte decomposition on cathode surfaces of lithium-ion batteries has attracted considerable attention because it leads to battery degradation and formation of a cathode solid-electrolyte interphase. In this study, we used density functional theory (DFT) calculations to investigate the distribution of the adsorption modes of ethylene carbonate (EC) electrolyte molecules and EC decomposition reactions on the (100) surfaces of lithiated (pristine) and delithiated forms of spinel-type LiNi0.5Mn1.5O4 (LNMO) as model cathode surfaces. DFT molecular dynamics (MD) simulations indicated that EC molecules have two characteristic adsorption modes. These two modes can satisfactorily explain the experimental observations and suggest a new feature of electrolyte-cathode interfaces in terms of the control of interfacial dipoles. On the basis of the DFT-MD results, we examined several possible pathways of EC decomposition on the LNMO (100) surfaces and estimated their activation barriers. We then found that the pristine LNMO (100) surface was inert with respect to the EC decomposition, whereas on delithiated surfaces, twofold-coordinated surface oxygen atoms generated by the delithiation process served as active sites for nucleophilic attack on the carbonyl carbon and the methylene group of adsorbed EC molecules. The induction of ring opening of the EC molecule by the former attack, and hydrogen abstraction from the methylene group and subsequent CO2 generation by the latter were consistent with experimental observations.
机译:锂离子电池阴极表面上的电解质分解引起了相当大的关注,因为它导致电池劣化和形成阴极固体电解质相互作用。在这项研究中,我们使用密度泛函理论(DFT)计算来研究碳酸亚碳酸亚乙酯(EC)电解质分子和EC分解反应对锂化(原始)和思维形式的尖晶石的(100)表面的分解反应的分布键入LINI0.5MN1.5O4(LNMO)作为模型阴极表面。 DFT分子动力学(MD)模拟表明EC分子具有两个特征吸附模式。这两种模式可以令人满意地解释实验观察,并在对界面偶极的控制方面提出了电解质阴极界面的新特征。在DFT-MD结果的基础上,我们检查了LNMO(100)表面上的焦类分解的几种可能的途径,并估计了它们的激活屏障。然后,我们发现原始LNMO(100)表面相对于EC分解呈惰性,而在脱果状的表面上,由脱发过程产生的双重协调的表面氧原子用作对羰基碳和亚甲基的亲核攻击的活性位点。组吸附的EC分子。通过前一种攻击诱导EC分子的环开口,以及后者的亚甲基和随后的二氧化碳生成与实验观察一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号