...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Ultrahigh-Rate-Performance Hierarchical Structured Na2Ti2O5@RGO Sodium-Ion Batteries and Revealing the Storage Mechanism Using In Situ Raman Spectroscopy
【24h】

Ultrahigh-Rate-Performance Hierarchical Structured Na2Ti2O5@RGO Sodium-Ion Batteries and Revealing the Storage Mechanism Using In Situ Raman Spectroscopy

机译:超高速率性能等级结构Na2Ti2O5 @ Rgo钠离子电池,并透露储存机制使用原位拉曼光谱

获取原文
获取原文并翻译 | 示例

摘要

Due to sodium's abundance and consequent affordability, sodium-ion batteries (SIBs) have attracted widespread attention as a cost-effective energy storage technology. However, poor cyclability at high current densities limits their practical applications. Owing to low volume changes during charge/discharge and high cycling stability, various sodium titanate based compounds have attracted considerable interest as anode materials. Despite this, Na2Ti2O5 has an unsatisfactory rate performance due to its sluggish Na-diffusion rates and low electrical conductivity. Herein, we show a novel anode nanocomposite material for SIBs with ultrahigh capacity and cycling stability composed of hierarchically structured Na2Ti2O5 nanofiber with reduced graphene oxide (Na2Ti2O5@RGO). Even with current density as high as 5000 mA (about 28 C), the capacity remained at similar to 84 mA h g(-1) after 10000 cycles. This outstanding performance and stability can be ascribed to the unique hierarchical structure of Na2Ti2O5 combined with RGO. Na2Ti2O5@RGO also exhibits an ultrahigh capacitive contribution ratio, which is critical for the superior performance. In a full battery setup containing a Na2Ti2O5@RGO anode, 36 LEDs could be illuminated simultaneously. Furthermore, the good reversibility and cycling stability of the Na2Ti2O5@RGO structure were proven using in situ Raman monitoring. These outlined results show that Na2Ti2O5@RGO has great potential for application as an energy storage technology with ultrahigh-rate charging/discharging.
机译:由于钠的丰富和随之的负担能力,钠离子电池(SIBS)引起了广泛的关注作为一种经济高效的能量存储技术。然而,在高电流密度下的可循环性差限制了它们的实际应用。由于在充电/放电和高循环稳定期间的体积变化,各种钛酸钠的化合物吸引了相当大的兴趣作为阳极材料。尽管如此,Na2Ti2O5由于其恶劣的NA-扩散速率和低导电性而具有令人满意的速率性能。在此,我们展示了具有超高容量和由具有较低氧化石墨烯(Na2Ti2O5 @ Rgo)的分层结构Na2Ti2O5纳米纤维组成的超高容量和循环稳定性的新型阳极纳米复合材料。即使电流密度高达5000 mA(约28℃),在10000次循环后,该容量仍然类似于84mA H(-1)。这种出色的性能和稳定性可以归因于Na2Ti2O5的独特层次结构与RGO相结合。 Na2Ti2O5 @ Rgo还表现出超高电容贡献比,这对于卓越的性能至关重要。在包含NA2TI2O5 @ RGO阳极的完整电池设置中,可以同时照亮36个LED。此外,使用原位拉曼监测证明了Na2Ti2O5 @ rgo结构的良好可逆性和循环稳定性。这些概述结果表明,Na2Ti2O5 @ Rgo具有巨大的应用潜力,作为具有超高速率充电/放电的能量存储技术。

著录项

  • 来源
  • 作者单位

    Xiamen Univ Coll Chem &

    Chem Engn State Key Lab Phys Chem Solid Surfaces Coll Energy Xiamen 361005 Peoples R China;

    Xiamen Univ Coll Chem &

    Chem Engn State Key Lab Phys Chem Solid Surfaces Coll Energy Xiamen 361005 Peoples R China;

    Xiamen Univ Coll Chem &

    Chem Engn State Key Lab Phys Chem Solid Surfaces Coll Energy Xiamen 361005 Peoples R China;

    Xiamen Univ Coll Chem &

    Chem Engn State Key Lab Phys Chem Solid Surfaces Coll Energy Xiamen 361005 Peoples R China;

    Xiamen Univ Coll Chem &

    Chem Engn State Key Lab Phys Chem Solid Surfaces Coll Energy Xiamen 361005 Peoples R China;

    Xiamen Univ Coll Chem &

    Chem Engn State Key Lab Phys Chem Solid Surfaces Coll Energy Xiamen 361005 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号