首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Role of Cations in the Methane/Carbon Dioxide Partitioning in Nano- and Mesopores of Illite Using Constant Reservoir Composition Molecular Dynamics Simulation
【24h】

Role of Cations in the Methane/Carbon Dioxide Partitioning in Nano- and Mesopores of Illite Using Constant Reservoir Composition Molecular Dynamics Simulation

机译:使用恒定贮存组成分子动力学模拟阳离子甲烷/二氧化碳分配在甲烷/二氧化碳分配中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

We performed constant reservoir composition molecular dynamics (CRC-MD) simulations at 323 K and 124 bar to quantitatively study the partitioning of fluid species between the nano- and mesopores of clay and a bulk reservoir containing an equimolar mixture of CO2 and CH4. The results show that the basal (001) and protonated edge (010) surfaces of illite both demonstrate a strong preference for CO2 over CH4 adsorption; that the (001) surfaces show a stronger preference for CO2 than the (010) surfaces, especially with K+ as the exchangeable cation; and that the structuring of the near-surface CO2 by K+ is stronger than that by Na+. The protonated (010) surfaces have a somewhat greater preference for CH4, with the concentration near them close to that in the bulk fluid. The effects of the surfaces on the fluid composition extend to approximately 2.0 nm from them, with the fluid composition at the center of the pore becoming essentially the same as the bulk composition at a pore thickness of similar to 5.7 nm. The preference of nano- and mesopores bounded by clay minerals for CO2 over CH4 suggests that injection of CO2 into tight reservoirs is likely to displace CH4 into larger pores, thus enhancing its production.
机译:我们在323K和124巴进行恒贮存组合物的分子动力学(CRC-MD)模拟定量研究纳米和粘土的介孔和含有CO 2和CH 4的等摩尔混合物的堆积贮存器之间的流体物质的分配。结果表明,伊利米石的基底(001)和质子化边缘(010)表面均表现出对CO 2的强烈偏好于CH 4吸附; (001)表面表现出对二氧化碳的偏好而不是(010)表面,尤其是K +作为可交换阳离子;并且,通过K +的近表面CO2的结构比Na +更强。质子化(010)表面对CH4具有稍微更大的偏好,靠近它们靠近散装液中的浓度。表面对流体组合物对其的影响延伸至其约2.0nm,在孔的中心处的流体组合物在与5.7nm类似的孔厚度下基本相同。通过CO 2的CLAI矿物界定的纳米和中孔的偏好表明,将CO2注入紧密储存器中可能将CH4移入较大的孔隙,从而提高其生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号