首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >What Is the Transfer Mechanism of Photoexcited Charge Carriers for g-C3N4/TiO2 Heterojunction Photocatalysts? Verification of the Relative p-n Junction Theory
【24h】

What Is the Transfer Mechanism of Photoexcited Charge Carriers for g-C3N4/TiO2 Heterojunction Photocatalysts? Verification of the Relative p-n Junction Theory

机译:用于G-C3N4 / TiO2异质结光催化剂的光屏蔽电荷载体的转移机制是什么? 验证相对p-n结理论

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Investigation of photoexcited charge transfer mechanism has always been one of the hotspots of the photocatalysis field. In our recent studies, the relative p-n junction was proposed as a new concept, and the built-in electric field formed in the heterojunction is the inner impetus for driving photoexcited charge transfer. Here, a series of g-C3N4/TiO2 samples with different mass percentage contents were synthesized and further characterized by physical and chemical techniques for the investigation of the charge transfer mechanism and internal natural law. The results state clearly that the migration of photoexcited charges belongs to Z-scheme mechanism, which is suitable for as-synthesized g-C3N4/TiO2 samples, whether the main part of the g-C3N4/TiO2 is TiO2 or g-C3N4. The photoexcited electrons enriched in g-C3N4 with a higher negative conduction band (CB) potential have reduction ability to convert O-2 into superoxide radicals (center dot O-2(-)). Meanwhile, the photoexcited holes in TiO2 with a higher positive valence band (VB) potential have oxidation ability to activate H2O or hydroxyl ions (OH-) to hydroxyl radicals (center dot OH). Furthermore, the g-C3N4/TiO2 photocatalyst exhibits better photocatalytic performance than TiO2 and g-C3N4. It is encouraging that the abovementioned Z-scheme mechanism of photoexcited charge transfer can also be explained and confirmed by the relative p-n junction theory. The built-in electric field promotes the migration of the photoexcited charges in the heterojunction, and its migration direction is opposite to that of the photoexcited charge in the CB and VB of g-C3N4 and TiO2. Therefore, the relative p-n junction theory not only is used to explicate the migration mechanism and internal natural law of the photoexcited charge in the heterojunction photocatalysts but also has crucial guiding significance for the theoretical design and practical construction of composite photocatalysts.
机译:的光激发电荷转移机制研究一直是光催化领域的热点之一。在我们最近的研究中,相对的P-N结提议作为一个新的概念,并内置在形成于异质结电场驱动光生电荷转移的内在动力。此处,一系列G-C3N4 / TiO2的样品具有不同的质量百分比含量的合成和通过用于电荷转移机构和内部自然法的调查物理和化学技术进一步表征。结果状态清楚的光激发电荷的迁移属于Z-方案机制,这是适合于合成后原样的G-C3N4 / TiO2的样品中,G-C3N4 / TiO 2的主要部分是否为TiO 2或G-C3N4。光激发的电子富集以g-C3N4具有较高负导带(CB)潜在具有还原能力转换O-2到超氧自由基(中心点O-2( - ))。同时,在二氧化钛光激发的空穴具有较高的正价带(VB)潜在具有活化H 2 O或氢氧根离子(OH-),以羟基自由基(中心点OH)氧化能力。此外,除二氧化钛和g-C3N4的g C3N4 /二氧化钛光催化剂具有更好的光催化性。令人鼓舞的是,光激发电荷转移的上述Z-方案机制也可以由相对的P-N结理论来解释和确认。内建电场促进在异质结光激发的电荷的迁移,并且其迁移方向相反,在G-C3N4和TiO 2的CB和VB光激发的电荷。因此,相对的P-N结理论不仅被用来阐明的迁移机制,并在异质结光催化剂的光激发电荷的内部自然法则,但也有复合光催化剂的理论设计和实际建设至关重要的指导意义。

著录项

  • 来源
  • 作者单位

    Huaibei Normal Univ Key Lab Clean Energy &

    Green Circulat Huaibei 235000 Anhui Peoples R China;

    Huaibei Normal Univ Key Lab Clean Energy &

    Green Circulat Huaibei 235000 Anhui Peoples R China;

    Huaibei Normal Univ Key Lab Clean Energy &

    Green Circulat Huaibei 235000 Anhui Peoples R China;

    Huaibei Normal Univ Key Lab Clean Energy &

    Green Circulat Huaibei 235000 Anhui Peoples R China;

    Huaibei Normal Univ Key Lab Clean Energy &

    Green Circulat Huaibei 235000 Anhui Peoples R China;

    Huaibei Normal Univ Key Lab Clean Energy &

    Green Circulat Huaibei 235000 Anhui Peoples R China;

    Huaibei Normal Univ Key Lab Clean Energy &

    Green Circulat Huaibei 235000 Anhui Peoples R China;

    Huaibei Normal Univ Key Lab Clean Energy &

    Green Circulat Huaibei 235000 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号