首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Can Machines 'Learn' Halide Perovskite Crystal Formation without Accurate Physicochemical Features?
【24h】

Can Machines 'Learn' Halide Perovskite Crystal Formation without Accurate Physicochemical Features?

机译:可以在没有准确的物理化学功能的情况下,机器“学习”卤化物蠕动晶体形成?

获取原文
获取原文并翻译 | 示例
           

摘要

Discovery of new perovskite materials is motivated by a broad range of materials applications and accelerated by recent advances in machine learning (ML). We herein report dataset augmentation, benchmarking, and interrogation for an ongoing experimental campaign consisting of 9483 halide perovskite synthesis experiments. To address limitations in previous work, we developed an improved description of the reactant concentrations in the experiments (validated against experimental observations) and performed experiments quantifying the excess volume of mixing of gamma-butyrolactone/formic acid mixtures used in the perovskite syntheses. Combining this improved description of reactant concentration with other physicochemical features of the reactants, we constructed 1108 ML models to elucidate the roles of the algorithm (k-nearest neighbors, linear support-vector machine, and gradient boosted tree), feature set (12 in total), preprocessing regime (e.g., standardization), and training data holdout scheme on ML predictive ability. ML comparisons illustrated that the chemical accuracy of less sophisticated physical models in a dataset do not hinder interpolative model performance. Analysis of feature contributions showed how ML models "learn" competitive representations for concentration using raw experimental descriptions. Interrogation of the most performant models indicated that the numerical values of physicochemical features were not important, rather these features were being used to identify and interpolate within a particular reactant set. ML models were shown to be capable of making rudimentary extrapolations to untrained chemical systems when compared against basic benchmarks, and models which included the newly developed chemical features were shown to be more reliable than models trained without. These results illustrate how a stepwise comparative approach to machine learning can provide insight into what and how much models are "learning" for a given prediction task.
机译:发现新的钙钛矿材料具有广泛的材料应用,并通过机器学习(ML)的最近进步加速。我们在此报告数据集增强,基准测试和审讯,用于由9483卤化物钙钛矿合成实验组成的正在进行的实验活动。为了解决先前的工作中的局限性,我们开发了实验中的反应物浓度的改进描述(验证了防止实验观察结果),并且对钙钛矿合成中使用的γ-丁内酯/甲酸混合物的过量混合进行了进行的实验。结合这种改进的反应物浓度描述与反应物的其他物理化学特征,我们构建了1108毫升模型,以阐明算法(K-CORMELEND邻居,线性支持 - 向量机和梯度提升树)的作用,功能集(12总计),预处理制度(例如,标准化),以及ML预测能力的培训数据阻止方案。 ML比较说明了数据集中更复杂的物理模型的化学精度不会阻碍内插模型性能。特征贡献的分析显示,使用原始实验描述,ML模型的竞争表示的竞争表现如何。最表现模型的询问表明物理化学特征的数值并不重要,而是这些特征被用于识别和插入特定的反应物组内。与基本基准测试相比,ML模型被证明能够对未经训练的化学系统进行基本外推,并且包括新开发的化学特征的模型比没有培训的模型更可靠。这些结果说明了机器学习的逐步比较方法如何为给定预测任务提供了对“学习”的内容和多少模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号