首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Tests of Kramers' Theory at the Single-Molecule Level: Evidence for Folding of an Isolated RNA Tertiary Interaction at the Viscous Speed Limit
【24h】

Tests of Kramers' Theory at the Single-Molecule Level: Evidence for Folding of an Isolated RNA Tertiary Interaction at the Viscous Speed Limit

机译:在单分子级别的克拉姆斯理论的测试:用于折叠粘性速度限制的分离的RNA三级相互作用的证据

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Dissipation and friction influence the conformational dynamics of biological polymers as they traverse barriers on rugged free energy surfaces. It is well established that the "speed limit" for macromolecular folding is dictated by a combination of (i) solvent friction, which depends on solvent viscosity, eta and (ii) internal friction, which is independent of solvent and depends solely on the molecular folding pathway. In this work, single-molecule Forster resonance energy transfer (FRET) confocal spectroscopy is used to study viscosity-dependent folding kinetics of an isolated RNA tertiary motif, that of the GAAA tetraloop receptor, allowing both solvent and internal frictional contributions to be investigated and extracted independently for both flexible PEG- and RNA-based (rU7, rA7) linkers in the unimolecular construct. Specifically, our single-molecule data reveal that (i) folding rate constants scale linearly with the inverse solvent viscosity (eta), which supports Kramers'/Grote-Hynes' rate theory for eta-dependent RNA folding and that (ii) they provide quantitative upper limits for the intrinsic viscosity, [eta(int) approximate to 0.1(2) cP], arising from internal friction associated with folding/unfolding of an isolated RNA tertiary interaction. Furthermore, in contrast to strong viscosity-induced shifts in the folding/unfolding rate constants, temperature-dependent studies demonstrate that the enthalpic, entropic, and free energy contributions to the transition state barrier are largely insensitive to the solvent viscosity. This supports a very simple picture for the conformational kinetics of isolated RNA tertiary interactions wherein rate constants for folding/unfolding are both inversely dependent on viscosity and limited by diffusional access to the transition state region on a multidimensional free energy surface. Particularly under cellular conditions, where eta(solv) 1 cp, this suggests that RNAs fold/unfold at a "speed limit" dictated by solvent viscosity and transitionstate barrier thermodynamics rather than internal molecular friction.
机译:耗散和摩擦会影响生物聚合物的构象动态,因为它们在崎岖的自由能表面上横穿屏障。很好地确定,用于大分子折叠的“限速”是通过(I)溶剂摩擦的组合来规定的,这取决于溶剂粘度,ETA和(II)内摩擦,其与溶剂无关并且仅取决于分子折叠途径。在这项工作中,单分子福尔斯特共振能量转移(FRET)共聚焦光谱用于研究分离的RNA三级基序的粘度依赖性动力学,GaAA Tetraloop受体的粘度折叠动力学,允许研究溶剂和内部摩擦贡献和独立地为单分子构建体中的柔性PEG和RNA基(RU7,RA7)接头进行萃取。具体而言,我们的单分子数据揭示(i)折叠速率常数与逆溶剂粘度(ETA)线性尺度,该粘度粘度(ETA)支持克拉姆/格雷特 - Hynes的速率理论,用于ETA依赖性RNA折叠,并且它们提供(ii)用于本征粘度的定量上限,[ETA(Int)近似为0.1(2)CP],从与分离的RNA三级相互作用的折叠/展开相关的内部摩擦产生。此外,与折叠/展开速率常数中的强粘度诱导的偏移相反,温度依赖性研究表明,对转变状态屏障的焓,熵和自由能量贡献对溶剂粘度很大地不敏感。这支持用于隔离RNA三级相互作用的构象动力学的非常简单的图像,其中用于折叠/展开的速率常数既取决于粘度,并通过对多维自由能表面上的转变状态区域的扩散访问而受到限制。特别是在细胞条件下,其中ETA(SOLV)> 1 CP,这表明RNA折叠/展开的“速度限制”由溶剂粘度和过渡屏障热力学而不是内部分子摩擦。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号