首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Ionic Diffusoosmosis in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes
【24h】

Ionic Diffusoosmosis in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes

机译:纳米通道覆盖终端电电解质刷的离子扩散胶质

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we develop a theory to study the imposed axial salt-concentration-gradient-driven ionic diffusioosmosis (IDO) in soft nanochannels or nanochannels grafted with end-charged polyelectrolyte (PE) brushes. Our analysis first quantifies the diffusioosmotically induced electric field, which is primarily dictated by the imposed concentration gradient (CG) with little contribution of the induced osmosis. This induced electric field triggers an electroosmotic (EOS) transport, while the net diffusioosmotic (DOS) transport results from a combination of this EOS transport and a chemiosmotic (COS) transport arising from the pressure gradient induced by the applied CG. Our results demonstrate that the DOS transport is massively enhanced in nanochannels grafted with PE brushes with weak grafting density stemming from the significantly enhanced EOS transport caused by the localization of the EOS body force away from the nanochannel walls. This augmentation is even stronger for cases where the COS transport aids the EOS transport. On the other hand, the DOS transport gets severely reduced in nanochannels grafted with dense PE brushes owing to the severity of the brush-induced additional drag force. We anticipate that these findings will help to unravel an entirely new understanding of induced electrokinetic transport in soft nanochannels.
机译:在本文中,我们开发了一种学习用终端电极聚电解质(PE)刷的软纳米中施加的轴向盐浓度梯度驱动离子瘤病(IDO)的理论。我们的分析首先量化了扩散型诱导的电场,其主要由施加的浓度梯度(CG)决定,诱导的渗透性几乎没有贡献。该诱导的电场触发了电渗(EOS)的转运,而净差异(DOS)转运来自该EOS传输的组合和由所施加的CG诱导的压力梯度产生的化学性质(COS)运输。我们的研究结果表明,在接枝的纳米刷子接枝的纳米刷中具有弱从纳米壁的定位引起的显着增强的EOS传输,DOS传输在接枝的缺陷型中,呈弱覆盆子刷。对于COS运输辅助EOS运输的情况,这种增强甚至更强大。另一方面,由于刷子诱导的额外牵引力的严重程度,在接枝的较密集PE刷子接枝的纳米通道中严重降低了DOS传输。我们预计这些发现将有助于解开对柔软纳米中的诱导电动输送的完全新的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号