首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Understanding the Origin of the Breakdown of the Stokes-Einstein Relation in Supercooled Water at Different Temperature-Pressure Conditions
【24h】

Understanding the Origin of the Breakdown of the Stokes-Einstein Relation in Supercooled Water at Different Temperature-Pressure Conditions

机译:了解不同温度压力条件下超级冷却水中斯托克斯 - 爱因斯坦关系的崩溃的起源

获取原文
获取原文并翻译 | 示例
           

摘要

A recent experiment has measured the viscosity of water down to approximately 244 K and up to 300 MPa. The correct viscosity and translational diffusivity data at various temperature-pressure (T-P) state points allowed for checking the validity of the Stokes-Einstein (SE) relation, which accounts for the coupling between translational self-diffusion and medium viscosity. The diffusion-viscosity decoupling increases with decreasing temperature, but the increasing pressure reduces the extent of the decoupling. Earlier simulation studies explained the breakdown of the SE relation in terms of the location of the Widom line, emanating from the liquid-liquid critical point (LLCP). Although these studies made a significant contribution to the current understanding of the above phenomena, a detailed molecular picture is still lacking. Recently, our group has explained the diffusion-viscosity decoupling from a jump-diffusion perspective. The jump-diffusion coefficient, emanating from the jump translation of water molecules, is calculated using a quantitative approach for different temperatures at ambient pressure. It has been observed that jump-diffusion is the key factor for diffusion-viscosity decoupling in supercooled water. The same method is adopted in the present work to estimate the jump-diffusion coefficient for different T-P state points and, thereby, explains the role of jump-diffusion for the different extents of the SE relation breakdown at different pressures. The residual diffusion coefficient, the other component of the total diffusion that originates from small step displacement and that is calculated by subtracting the jump-diffusion coefficient from the total diffusion, is seen to be fairly coupled to the viscosity at the entire range of temperature and pressure. Furthermore, we have calculated the average number of H-bonds per water molecule and the tetrahedral order for different T-P state points and investigated an approximate correlation between the average local structure and the contribution of the jump-diffusion to the total diffusion of water. This study, therefore, puts forward a new perspective for explaining the SE relation breakdown in supercooled water under different pressure conditions.
机译:最近的实验已经测量了水的粘度降至约244k,高达300MPa。在各种温度 - 压力(T-P)状态点处的正确粘度和平移扩散性数据允许检查Stokes-Einstein(SE)关系的有效性,这考虑了平移自扩散和中粘度之间的耦合。扩散粘度去耦随着温度的降低而增加,但增加的压力降低了去耦的程度。早期的模拟研究解释了在国有型临界点(LLCP)发出的范围内的LOP的位置的SE关系的击穿。虽然这些研究对目前对上述现象的理解作出了重大贡献,但详细的分子图片仍然缺乏。最近,我们的小组已经解释了跳跃扩散视角下的扩散粘度去耦。使用在环境压力下不同温度的定量方法计算从水分子的跳跃翻译产生的跳跃扩散系数。已经观察到跳跃扩散是过冷水中扩散粘度去耦的关键因素。本作工作中采用了相同的方法来估计不同T-P态点的跳跃扩散系数,从而解释了跳跃扩散对不同压力的SE关系击穿的不同范围的作用。剩余扩散系数,源自小步位移的总扩散的另一个部件,并且通过从总扩散中减去跳跃扩散系数来计算的总扩散的另一个部件被认为是相当耦合到整个温度范围内的粘度和压力。此外,我们已经计算了不同T-P状态点的每水分分子的平均H键数和四面体顺序,并研究了平均局部结构与跳跃扩散到水的总扩散之间的近似相关性。因此,本研究提出了一种新的视角,用于在不同压力条件下解释过冷水中的SE关系击穿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号