...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Consistent Model of Ultrafast Energy Transfer in Peridinin Chlorophyll-a Protein Using Two-Dimensional Electronic Spectroscopy and Forster Theory
【24h】

Consistent Model of Ultrafast Energy Transfer in Peridinin Chlorophyll-a Protein Using Two-Dimensional Electronic Spectroscopy and Forster Theory

机译:二维电子光谱法与扶手理论的果林叶绿素-A蛋白质超快能量转移的一致模型

获取原文
获取原文并翻译 | 示例
           

摘要

Solar light harvesting begins with electronic energy transfer in structurally complex light-harvesting antennae such as the peridinin chlorophyll-a protein from dinoflagellate algae. Peridinin chlorophyll-a protein is composed of a unique combination of chlorophylls sensitized by carotenoids in a 4:1 ratio, and ultrafast spectroscopic methods have previously been utilized in elucidating their energy-transfer pathways and timescales. However, due to overlapping signals from various chromophores and competing pathways and timescales, a consistent model of intraprotein electronic energy transfer has been elusive. Here, we used a broad-band two-dimensional electronic spectroscopy, which alleviates the spectral congestion by dispersing excitation and detection wavelengths. Interchromophoric couplings appeared as cross peaks in two-dimensional electronic spectra, and these spectral features were observed between the peridinin S-2 states and chlorophyll-a Q(x) and Q(y) states. In addition, the inherently high time and frequency resolutions of two-dimensional electronic spectroscopy enabled accurate determination of the ultrafast energy-transfer dynamics. Kinetic analysis near the peridinin S-1 excited-state absorption, which forms in 24 fs after optical excitation, reveals an ultrafast energy-transfer pathway from the peridinin S-2 state to the chlorophyll-a Q(x) state, a hitherto unconfirmed pathway critical for fast interchromophoric transfer. We propose a model of ultrafast peridinin chlorophyll-a protein photophysics that includes (1) a conical intersection between peridinin S-2 and S-1 states to explain both the ultrafast peridinin Si formation and the residual peridinin S-2 population for energy transfer to chlorophyll-a, and (2) computationally and experimentally derived peridinin S-2 site energies that support the observed ultrafast peridinin S-2 to chlorophyll-a Q(x) energy transfer.
机译:太阳能光收获从结构复杂的光收集天线中的电子能量转移开始,例如赤素蛋白叶绿素藻类蛋白蛋白。 Peridinin叶绿素-A蛋白质由4:1的比例中的类胡萝卜素致敏的叶绿素组合的独特组合,并且先前已经利用超快光谱方法阐明其能量转移途径和时间尺度。然而,由于来自各种发色团和竞争途径和时间尺寸的重叠信号,跨型蛋白质电子能源转移一致的模型一直难以捉摸。这里,我们使用了宽带二维电子光谱,通过分散激励和检测波长来减轻光谱充血。在二维电子光谱中出现的间运动焦耦合出现为交叉峰值,并且在白蛋白S-2状态和叶绿素-A Q(x)和Q(Y)状态之间观察到这些光谱特征。此外,固有的高时间和频率分辨率的二维电子光谱能够精确确定超快能量传递动态。在赤素蛋白S-1激发状态附近的动力学分析,其在光学激发后形成24 fs,揭示了从白蛋白S-2状态到叶绿素-A Q(x)状态的超快能量转移途径,迄今为止未经证实途径对于快速的间运动传递至关重要。我们提出了一种超薄赤素蛋白叶绿素-A蛋白质光学样的模型,该蛋白质光学药物包括(1)赤素蛋白S-2和S-1之间的锥形交叉点,以解释超薄赤素蛋白Si形成和残留的赤素蛋白S-2群体用于能量转移叶绿素-A和(2)计算和实验衍生的赤素蛋白S-2位点能量,其支持观察到的超快赤素蛋白S-2至叶绿素-A Q(x)能量转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号