...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators
【24h】

Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators

机译:海马纹波振荡和抑制 - 第一网络模型:频率动力学和对GABA调制器的响应

获取原文
获取原文并翻译 | 示例
           

摘要

Hippocampal ripples are involved in memory consolidation, but the mechanisms underlying their generation remain unclear. Models relying on interneuron networks in the CA1 region disagree on the predominant source of excitation to interneurons: either "direct," via the Schaffer collaterals that provide feedforward input from CA3 to CA1, or " indirect," via the local pyramidal cells in CA1, which are embedded in a recurrent excitatory-inhibitory network. Here, we used physiologically constrained computational models of basket-cell networks to investigate how they respond to different conditions of transient, noisy excitation. We found that direct excitation of interneurons could evoke ripples (140 - 220 Hz) that exhibited intraripple frequency accommodation and were frequency-insensitive to GABA modulators, as previously shown in in vitro experiments. In addition, the indirect excitation of the basket-cell network enabled the expression of intraripple frequency accommodation in the fast-gamma range (90 - 140 Hz), as in vivo. In our model, intraripple frequency accommodation results from a hysteresis phenomenon in which the frequency responds differentially to the rising and descending phases of the transient excitation. Such a phenomenon predicts a maximum oscillation frequency occurring several milliseconds before the peak of excitation. We confirmed this prediction for ripples in brain slices from male mice. These results suggest that ripple and fast-gamma episodes are produced by the same interneuron network that is recruited via different excitatory input pathways, which could be supported by the previously reported intralaminar connectivity bias between basket cells and functionally distinct subpopulations of pyramidal cells in CA1. Together, our findings unify competing inhibition-first models of rhythm generation in the hippocampus.
机译:海马涟漪参与了内存整合,但他们的一代的机制仍然不清楚。依赖于CA1区域中的Intereeuron网络的模型不同意潜在的激励源,以通过CA3中的CA3至CA1的前馈输入提供的Schaffer侧面,或通过CA1中的局部金字塔细胞提供馈电输入,它嵌入在经常性的兴奋性抑制网络中。在这里,我们使用的生理学上受限的篮子单元网络计算模型来研究它们如何应对不同的瞬态条件,嘈杂的激励。我们发现,中间核的直接激发可以引起涟漪(140-220Hz),该涟漪(140-220Hz)表现出肾内频率容纳,并且对GABA调节剂的频率不敏感,如在体外实验中先前所示。此外,篮子单元网络的间接激励使得在快速伽马范围(90-140Hz)中的窝内频率容纳表达,如体内。在我们的模型中,内部频率容纳由滞后现象产生,其中频率差异差异地响应瞬态激励的上升和下降阶段。这种现象预测在激励峰之前发生几毫秒的最大振荡频率。我们确认了对来自雄性小鼠脑切片涟漪的预测。这些结果表明纹波和快速伽马集发作由通过不同兴奋性输入途径募集的相同的内核网络产生,这可以通过先前报道篮子细胞之间的血际胞瘤细胞之间的先前报道的胰蛋白酶连贯偏压来支持。我们的研究结果在一起统一竞争抑制 - 在海马中的第一个节奏模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号