...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Spinal Motor Circuit Synaptic Plasticity after Peripheral Nerve Injury Depends on Microglia Activation and a CCR2 Mechanism
【24h】

Spinal Motor Circuit Synaptic Plasticity after Peripheral Nerve Injury Depends on Microglia Activation and a CCR2 Mechanism

机译:外周神经损伤后的脊柱电机电路突触可塑性取决于小胶质细胞活化和CCR2机制

获取原文
获取原文并翻译 | 示例

摘要

Peripheral nerve injury results in persistent motor deficits, even after the nerve regenerates and muscles are reinnervated. This lack of functional recovery is partly explained by brain and spinal cord circuit alterations triggered by the injury, but the mechanisms are generally unknown. One example of this plasticity is the die-back in the spinal cord ventral horn of the projections of proprioceptive axons mediating the stretch reflex (Ia afferents). Consequently, Ia information about muscle length and dynamics is lost from ventral spinal circuits, degrading motor performance after nerve regeneration. Simultaneously, there is activation of microglia around the central projections of peripherally injured Ia afferents, suggesting a possible causal relationship between neuroinflammation and Ia axon removal. Therefore, we used mice (both sexes) that allow visualization of microglia (CX3CR1-GFP) and infiltrating peripheral myeloid cells (CCR2-RFP) and related changes in these cells to la synaptic losses (identified by VGLUT1 content) on retrogradely labeled motoneurons. Microgliosis around axotomized motoneurons starts and peaks within 2 weeks after nerve transection. Thereafter, this region becomes infiltrated by CCR2 cells, and VGLUT1 synapses are lost in parallel. Immunohistochemistry, flow cytometry, and genetic lineage tracing showed that infiltrating CCR2 cells include T cells, dendritic cells, and monocytes, the latter differentiating into tissue macro-phages. VGLUT1 synapses were rescued after attenuating the ventral microglial reaction by removal of colony stimulating factor 1 from motoneurons or in CCR2 global KOs. Thus, both activation of ventral microglia and a CCR2-dependent mechanism are necessary for removal of VGLUT1 synapses and alterations in la-circuit function following nerve injuries.
机译:即使在重新生成和肌肉被重新恢复后,外周神经损伤也会导致持续的电机缺陷。这种缺乏功能恢复是由受伤引发的脑和脊髓电路改变的部分解释,但机制通常是未知的。这种可塑性的一个例子是脊髓腹喇叭的末端脊髓腹部的突出的轴突的凸起介导拉伸反射(IA传入)。因此,有关肌肉长度和动力学的信息从腹侧脊柱电路损失,在神经再生后降解电机性能。同时,在外周损伤的IA传入的中央突出周围激活微胶质,表明神经炎症和IA轴突中的可能因果关系。因此,我们使用允许微胶质细胞(CX3CR1-GFP)和浸润外周骨髓细胞(CCR2-RFP)和这些细胞的相关变化在逆行地标记的运动神经元上的LA突触损失(通过VGLUT1含量鉴定)的相关性变化。在神经横断后2周内开始和峰值的微细曲线。此后,CCR2细胞渗透该区域,并且Vglut1突触并联丢失。免疫组织化学,流式细胞术和遗传谱系跟踪表明,渗透CCR2细胞包括T细胞,树突细胞和单核细胞,后者被分化为组织宏观。通过从Motoneuron或CCR2全球KOS中除去菌落刺激因子1而衰减伴菌刺激因子1后,拯救Vglut1突触。因此,腹侧微胶质细胞的激活和CCR2依赖性机制是在神经损伤后去除LA-COUNTIN功能的VGLUT1突触和改变所必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号