...
首页> 外文期刊>The Journal of Chemical Physics >Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels
【24h】

Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels

机译:基于结构的采样和自我校正机学习,用于精确计算潜在的能量表面和振动水平

获取原文
获取原文并翻译 | 示例
           

摘要

We present an efficient approach for generating highly accurate molecular potential energy surfaces (PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We introduce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid to the training and prediction sets, respectively. Accurate high-level ab initio energies are required only for the points in the training set, while the energies for the remaining points are provided by the ML model with negligible computational cost. The proposed sampling procedure is shown to be superior to random sampling and also eliminates the need for training several ML models. Self-correcting machine learning has been implemented such that each additional layer corrects errors from the previous layer. The performance of our approach is demonstrated in a case study on a published high-level ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different sizes and then used to predict the energies for tens of thousands of nuclear configurations within seconds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure calculations through structure-based sampling and self-correcting KRR-based machine learning by up to 90%. Published by AIP Publishing.
机译:我们提出了一种有效的方法,用于使用自校正,基于基于机器的机器学习(KRR)的高精度分子潜在能量表面(PES)产生高精度的分子潜在能量表面(PES)。我们介绍基于结构的采样,分别从预定义网格自动分配核配置,分别为培训和预测集。只需要精确的高级AB Initio Energies,只需要培训集中的点,而剩余点的能量由ML模型提供可忽略的计算成本。所提出的采样程序显示出优于随机采样,并且还消除了培训几毫米型号的需求。已经实现了自我校正机学习,使得每个附加层校正前一层的错误。在具有44 819分的甲基氯化物的发表的高级AB初始PES的情况下,证明了我们的方法的表现。 ML模型在不同尺寸的组上培训,然后用于在几秒钟内预测成千上万的核配置的能量。所得到的数据集用于CH3CL的振动能级的变分计算。通过使用基于结构的采样和自我校正,训练集的尺寸可以保持小(例如,分数的10%),而无需任何显着的精度损失。在AB初始振动光谱中,可以通过基于结构的采样和基于自校正的KRR的机器学习达到高达90%来减少计算昂贵的电子结构计算的数量。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号