首页> 外文期刊>The Journal of Chemical Physics >Surface defect passivation of Ta3N5 photoanode via pyridine grafting for enhanced photoelectrochemical performance
【24h】

Surface defect passivation of Ta3N5 photoanode via pyridine grafting for enhanced photoelectrochemical performance

机译:通过吡啶接枝的Ta3N5光电码的表面缺陷钝化,提高光电化学性能

获取原文
获取原文并翻译 | 示例
           

摘要

Tantalum nitride (Ta3N5) is a promising photoanode material for photoelectrochemical (PEC) water splitting, while the Ta3N5/Ta photoanode synthesized via general thermal oxidation and nitridation on a Ta foil method usually has serious carrier recombination at the surface, which usually reduces the PEC activities. Herein, we demonstrate an efficient strategy of decorating pyridine, a small organic molecule at the surface of the Ta3N5/Ta photoanode, to alleviate the surface recombination. Such decoration yields a stable photocurrent density of 4.4 mA cm(-2) at 1.23 V-RHE under AM 1.5G (air mass 1.5 global, 100 mW cm(-2)) simulated sunlight, which is about 1.4 times higher than that of Ta3N5/Ta without modification, and the photocurrent density still remained similar to 100% of its original value after a 5 h stability test. Further characterization of the incident photon-to-current conversion efficiency and absorbed photon-to-current efficiency of the pyridine/Ta3N5/Ta photoanode showed a significant increase to 62% and 72% at 500 nm, respectively. The enhanced pyridine/Ta3N5/Ta PEC performance can be attributed to minimizing the density of nitrogen vacancies due to the passivation of pyridine grafting, which results in the decreased recombination centers and improved charge separation efficiency at the surface. We thus believe that our study of surface passivation by using small organic molecules provides an alternative to address the surface recombination of Ta3N5 based photoelectrodes. Published under license by AIP Publishing.
机译:氮化钽(Ta3N5)是用于光电化学(PEC)水分子的有前途的光电码材料,而通过一般热氧化和TA箔法的氮化合成的Ta3N5 / Ta光电通常在表面上具有严重的载体重组,这通常会减少PEC活动。在此,我们证明了装饰吡啶,在TA3N5 / TA光电表面的表面处的小有机分子的有效策略,以减轻表面重组。这种装饰产生4.4 mA cm(-2)的稳定的光电浓度密度,在1.5g(空气质量1.5全局,100 mW cm(-2))模拟阳光下,其阳光高出1.23V-rhe。比其高约1.4倍Ta3N5 / Ta没有修饰,并且在5小时稳定性测试后,光电流密度仍然与其原始值的100%相似。进一步表征入射的光子 - 电流转化效率和吸收的吡啶/ TA3N5 / TA光电极的光子至电流效率,分别显示出显着增加至500nm的62%和72%。增强的吡啶/ TA3N5 / TA PEC性能可归因于最小化由于吡啶接枝的钝化而最小化氮空位的密度,这导致降低的重组中心和表面的改善电荷分离效率。因此,我们认为我们通过使用小有机分子的表面钝化研究提供了解决基于Ta3N5的光电极的表面重组的替代方案。通过AIP发布在许可证下发布。

著录项

  • 来源
    《The Journal of Chemical Physics》 |2020年第2期|共8页
  • 作者单位

    Northwestern Polytech Univ State Key Lab Solidificat Proc Ctr Nano Energy Mat Sch Mat Sci &

    Engn Xian 710072 Peoples R China;

    Northwestern Polytech Univ State Key Lab Solidificat Proc Ctr Nano Energy Mat Sch Mat Sci &

    Engn Xian 710072 Peoples R China;

    Northwestern Polytech Univ State Key Lab Solidificat Proc Ctr Nano Energy Mat Sch Mat Sci &

    Engn Xian 710072 Peoples R China;

    Northwestern Polytech Univ State Key Lab Solidificat Proc Ctr Nano Energy Mat Sch Mat Sci &

    Engn Xian 710072 Peoples R China;

    Northwestern Polytech Univ State Key Lab Solidificat Proc Ctr Nano Energy Mat Sch Mat Sci &

    Engn Xian 710072 Peoples R China;

    Shaanxi Normal Univ Shaanxi Key Lab Adv Energy Devices Shaanxi Engn Lab Adv Energy Technol Natl Minist E Sch Mat Sci &

    Engn Key Lab Appl Surface &

    Colloid 620 West Changan St Xian 710119 Shaanxi Peoples R China;

    Shaanxi Normal Univ Shaanxi Key Lab Adv Energy Devices Shaanxi Engn Lab Adv Energy Technol Natl Minist E Sch Mat Sci &

    Engn Key Lab Appl Surface &

    Colloid 620 West Changan St Xian 710119 Shaanxi Peoples R China;

    Shaanxi Normal Univ Shaanxi Key Lab Adv Energy Devices Shaanxi Engn Lab Adv Energy Technol Natl Minist E Sch Mat Sci &

    Engn Key Lab Appl Surface &

    Colloid 620 West Changan St Xian 710119 Shaanxi Peoples R China;

    Northwestern Polytech Univ State Key Lab Solidificat Proc Ctr Nano Energy Mat Sch Mat Sci &

    Engn Xian 710072 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号