首页> 外文期刊>The Journal of Chemical Physics >cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale
【24h】

cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale

机译:CDPD:一种新的散粒动力学方法,用于在Mescle造型中建模电动现象

获取原文
获取原文并翻译 | 示例
           

摘要

We develop a "charged" dissipative particle dynamics (cDPD) model for simulating mesoscopic electrokinetic phenomena governed by the stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. Specifically, the transport equations of ionic species are incorporated into the DPD framework by introducing extra degrees of freedom and corresponding evolution equations associated with each DPD particle. Diffusion of ionic species driven by the ionic concentration gradient, electrostatic potential gradient, and thermal fluctuations is captured accurately via pairwise fluxes between DPD particles. The electrostatic potential is obtained by solving the Poisson equation on the moving DPD particles iteratively at each time step. For charged surfaces in bounded systems, an effective boundary treatment methodology is developed for imposing both the correct hydrodynamic and electrokinetics boundary conditions in cDPD simulations. To validate the proposed cDPD model and the corresponding boundary conditions, we first study the electrostatic structure in the vicinity of a charged solid surface, i.e., we perform cDPD simulations of the electrostatic double layer and show that our results are in good agreement with the well-known mean-field theoretical solutions. We also simulate the electrostatic structure and capacity densities between charged parallel plates in salt solutions with different salt concentrations. Moreover, we employ the proposed methodology to study the electro-osmotic and electro-osmotic/pressure-driven flows in a micro-channel. In the latter case, we simulate the dilute poly-electrolyte solution drifting by electro-osmotic flow in a micro-channel, hence demonstrating the flexibility and capability of this method in studying complex fluids with electrostatic interactions at the micro-and nano-scales. Published by AIP Publishing.
机译:我们开发了“充电的”耗散粒子动态(CDPD)模型,用于模拟随机泊松 - 内核人员和Navier-Stokes方程来管理的介观电动现象。具体地,通过引入与每个DPD颗粒相关联的额外的自由度和相应的演化方程,将离子物质的传输方程掺入DPD框架中。离子浓度梯度,静电电位梯度和热波动驱动的离子物质的扩散通过DPD颗粒之间的成对助熔剂精确地捕获。通过在每次步骤中迭代地求解移动的DPD颗粒上的泊松方程来获得静电电位。对于有界系统中的带电表面,开发了一种有效的边界处理方法,用于对CDPD模拟中的正确流体动力学和电动电动边界条件强加。为了验证所提出的CDPD模型和相应的边界条件,我们首先研究带电固体表面附近的静电结构,即,我们执行静电双层的CDPD模拟,并表明我们的结果与井有良好的一致协议 - 知识的意思场理论解决方案。我们还模拟了具有不同盐浓度的盐溶液中带电平行板之间的静电结构和容量密度。此外,我们采用所提出的方法来研究微通道中的电渗透和电渗透/压力驱动流。在后一种情况下,我们模拟通过微通道中的电渗透流漂移的稀合多电解质溶液,因此可以证明该方法在研究微型和纳米尺度的静电相互作用的复杂流体方面的柔韧性和能力。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号