首页> 外文期刊>The Journal of Chemical Physics >Reproducing global potential energy surfaces with continuous-filter convolutional neural networks
【24h】

Reproducing global potential energy surfaces with continuous-filter convolutional neural networks

机译:用连续过滤卷积神经网络再现全球潜在能量表面

获取原文
获取原文并翻译 | 示例
           

摘要

Neural networks fit to reproduce the potential energy surfaces of quantum chemistry methods offer a realization of analytic potential energy surfaces with the accuracy of ab initio methods at a computational cost similar to classical force field methods. One promising class of neural networks for this task is the SchNet architecture, which is based on the use of continuous-filter convolutional neural networks. Previous work has shown the ability of the SchNet architecture to reproduce density functional theory energies and forces for molecular configurations sampled during equilibrated molecular dynamics simulations. Due to the large change in energy when bonds are broken and formed, the fitting of global potential energy surfaces is normally a more difficult task than fitting the potential energy surface in the region of configurational space sampled during equilibrated molecular dynamics simulations. Herein, we demonstrate the ability of the SchNet architecture to reproduce the energies and forces of the potential energy surfaces of the H + H-2 and Cl + H-2 reactions and the OCHCO+ and H2CO/cis-HCOH/trans-HCOH systems. The SchNet models reproduce the potential energy surface of the reactions well with the best performing SchNet model having a test set root-mean-squared error of 0.52 meV and 2.01 meV for the energies of the H + H-2 and Cl + H-2 reactions, respectively, and a test set mean absolute error for the force of 0.44 meV/bohr for the H + H-2 reaction. For the OCHCO+ and H2CO/cis-HCOH/trans-HCOH systems, the best performing SchNet model has a test set root-mean-squared error of 2.92 meV and 13.55 meV, respectively. Published under license by AIP Publishing.
机译:神经网络适合再现量子化学方法的潜在能量表面,以与经典力现场方法类似的计算成本提供分析势能表面的实现。这项任务的一个有前途的神经网络是斯基纳架构,它基于使用连续过滤卷积神经网络。以前的工作表明了薛富架构再现密度泛函理论能量和用于在平衡的分子动力学模拟期间采样的分子配置的能力的能力。由于粘合断裂和形成时的能量变化,全局势能表面的配合通常是比在平衡的分子动力学模拟期间采样的配置空间区域中的潜在能量表面更困难的任务。在此,我们证明了薛富架构再现H + H-2和Cl + H-2反应和OCHCO +和H2CO / CIS-HCOH / Trans-HCOH系统的能量和力的能力和力的能力。 Schnet模型将反应的潜在能量表面再现良好的反应的潜在能量表面,其具有0.52meV和2.01 MeV的测试设置的测试设置的根均平方误差为H + H-2和Cl + H-2的能量分别反应,以及试验组为H + H-2反应的0.44mEV / BOHR的力的绝对误差。对于OCHCO +和H2CO / CIS-HCOH / Trans-HCOH系统,最佳性能的Schnet模型分别具有2.92 MeV和13.55 MeV的测试设置设置的根均平方误差。通过AIP发布在许可证下发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号