首页> 外文期刊>The Journal of Chemical Physics >Real-space observation of far- and near-field-induced photolysis of molecular oxygen on an Ag(110) surface by visible light
【24h】

Real-space observation of far- and near-field-induced photolysis of molecular oxygen on an Ag(110) surface by visible light

机译:通过可见光,通过可见光对Ag(110)表面上的分子氧的远和近场诱导光解的真实空间观察

获取原文
获取原文并翻译 | 示例
           

摘要

Dissociation of molecular oxygen is an important elementary process in heterogeneous catalysis. Here, we report on a real-space observation of oxygen photolysis on the Ag(110) surface at 78 K by far- and near-field excitation in the ultraviolet-near-infrared range using a low-temperature scanning tunneling microscope (STM) combined with wavelength-tunable laser excitation. The photolysis of isolated oxygen molecules on the surface occurs even by visible light with the cross section of similar to 10(-19) cm(2). Time-dependent density functional theory calculations reveal optical absorption of the hybridized O-2-Ag(110) complex in the visible and the near-infrared range which is associated with the oxygen photolysis. We suggest that the photolysis mechanism involves a direct charge transfer process. We also demonstrate that the photolysis can be largely enhanced in plasmonic STM junctions, and the cross section is estimated to be similar to 10(-17) cm(-2) in the visible and the near-infrared range, which appears to be an interesting feature of plasmon-induced reactions from the perspective of photochemical conversion with the aid of solar energy. Published under license by AIP Publishing.
机译:分子氧的解离是异质催化中的重要基本方法。这里,通过使用低温扫描隧道显微镜(STM)在78 k下,在78k下近场激发报告氧气光解的真实空间观察到78k的近场激发结合波长可调激光激发。甚至通过具有类似于10(-19)厘米(2)的横截面的可见光即使表面上的分离的氧分子的光解。时间依赖性密度函数理论计算揭示了与氧光解相关的可见光和近红外范围中杂交的O-2-Ag(110)络合物的光学吸收。我们建议光解机制涉及直接电荷转移过程。我们还证明了在等离子体STM结中可以大大提高光解,并且横截面估计在可见光和近红外范围内的10(-17 )cm(-2)类似,这似乎是一个从太阳能借助于光化学转换的角度,等离子体诱导反应的有趣特征。通过AIP发布在许可证下发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号