首页> 外文期刊>The Journal of Chemical Physics >Energy transfer mechanisms in layered 2D perovskites
【24h】

Energy transfer mechanisms in layered 2D perovskites

机译:分层2D Perovskites中的能量转移机制

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA)(2)(MA)(n - 1)[PbnI3n+1] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics. Published by AIP Publishing.
机译:二维(2D)Perovskite量子孔产生广泛的科学兴趣,因为它们在光电器件中使用的可能性。最近,已经表明,可以生长2D钙锌矿层,其中量子孔的平均厚度从薄膜的前部增加。这种几何形状对光收集应用的影响是因为量子阱随着厚度的增加而减小的带隙。在该作品中调查的2D钙钛矿系统的一般结构公式是(豌豆)(2)(2)(MA)(N - 1)[PBNI3N + 1](PEA =苯乙烯烃,MA =甲基铵)。在这里,我们研究了具有不同量子孔厚度的不同分布的两个分层的2D钙钛矿。光谱测量和模型计算表明,两个系统通过100次PS(即,能量转移到较厚量子阱的能量转移的时间尺度上的能量传递机制漏斗从膜的后部漏斗从膜的前部漏斗。另外,模型计算表明,瞬态吸收光谱由与单个量子孔相关的单一激子和Biexciton共振的进展组成。我们发现激励后,激子解离和/或电荷运输动力学仅对前1NS内的瞬态吸收光谱进行了微小贡献。能量转移动力学的分析表明,由于控制能量传输速率的光谱重叠因子,因此主要在量子阱之间发生转换,其值为1。二维瞬态吸收光谱揭示了与顺序能量转移动态的优势一致的共振模式。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号