首页> 外文期刊>The Journal of Chemical Physics >Optimal design of graphene nanopores for seawater desalination
【24h】

Optimal design of graphene nanopores for seawater desalination

机译:海水淡化石墨烯纳米孔的最优设计

获取原文
获取原文并翻译 | 示例
           

摘要

Extensive molecular dynamics simulations are employed to optimize nanopore size and surface charge density in order to obtain high ionic selectivity and high water throughput for seawater desalination systems. It is demonstrated that with the help of surface charge exclusion, nanopores with diameter as large as 3.5 nm still have high ionic selectivity. The mechanism of the salt rejection in a surfacecharged nanopore is mainly attributed to the ion concentration difference between the cations and anions induced by the surface charges. Increasing surface charge density is beneficial to enhance ionic selectivity. However, there exists a critical value for the surface charge density. Once the surface charge density exceeds the critical value, charge inversion occurs inside a nanopore. Further increasing the surface charge density will deteriorate the ionic selectivity because the highly charged nanopore surface will allow more coions to enter the nanopore in order to keep the whole system in charge neutrality. Besides the surface charge density, the nanopore length also affects the ionic selectivity. Based on our systematic simulations, nanopores with surface charge density between -0.09 C/m(2) and -0.12 C/m(2), diameters smaller than 3.5 nm, and membrane thickness ranging between 8 and 10 graphene layers show an excellent performance for the ionic selectivity. Published by AIP Publishing.
机译:采用广泛的分子动力学模拟来优化纳米孔尺寸和表面电荷密度,以获得高离子选择性和海水淡化系统的高水产量。据证明,在表面电荷排除的帮助下,具有大约3.5nm的直径的纳米孔仍具有高离子选择性。冲浪型纳米孔中的盐排斥的机制主要归因于表面电荷诱导的阳离子和阴离子之间的离子浓度差异。增加表面电荷密度有利于增强离子选择性。然而,存在表面电荷密度的临界值。一旦表面电荷密度超过临界值,就会在纳米孔内发生电荷反转。进一步增加表面电荷密度会使离子选择性劣化,因为高电荷的纳米孔表面将允许更多的粘合进入纳米孔,以便保持整个系统的充电中立系统。除了表面电荷密度外,纳米孔长度也会影响离子选择性。基于我们的系统模拟,纳米孔具有-0.09 c / m(2)和-0.12 c / m(2)的表面电荷密度,直径小于3.5nm,8到10个石墨烯层之间的膜厚度显示出优异的性能用于离子选择性。通过AIP发布发布。

著录项

  • 来源
    《The Journal of Chemical Physics》 |2018年第1期|共9页
  • 作者单位

    Southeast Univ Sch Mech Engn Jiangsu Key Lab Design &

    Manufacture Micronano Bi Nanjing 211189 Jiangsu Peoples R China;

    Northeastern Univ Dept Phys Boston MA 02115 USA;

    Southeast Univ Sch Mech Engn Jiangsu Key Lab Design &

    Manufacture Micronano Bi Nanjing 211189 Jiangsu Peoples R China;

    Southeast Univ Sch Mech Engn Jiangsu Key Lab Design &

    Manufacture Micronano Bi Nanjing 211189 Jiangsu Peoples R China;

    Shanghai Inst Microsyst &

    Informat Technol State Key Lab Transducer Technol Natl Key Lab Microsyst Technol Shanghai 200050 Peoples R China;

    Southeast Univ Sch Mech Engn Jiangsu Key Lab Design &

    Manufacture Micronano Bi Nanjing 211189 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号