...
首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Chip formation mechanism in dry hard high-speed orthogonal turning of hardened AISI D2 tool steel with different hardness levels
【24h】

Chip formation mechanism in dry hard high-speed orthogonal turning of hardened AISI D2 tool steel with different hardness levels

机译:具有不同硬度水平的硬化AISI D2工具钢干燥硬高速正交转动芯片形成机制

获取原文
获取原文并翻译 | 示例
           

摘要

Serrated chip formed in dry hard turning is considered one of the major chip types. In this paper, the main objective was to understand how the crack initiation and propagation, and thermo-plastic instability and pressure from force contribute to the formation mechanism of serrated chip in dry hard high-speed orthogonal turning (DHHOT) of the hardened steel with different hardness levels at cutting speed with 50, 450, and 850 m/min. The influences of the cutting speeds (50, 450, and 850 m/min) and workpiece hardness (40, 45, 50, 55, and 60 +/- 1 Rockweel hardness (HRC)) on chip morphology, segment spacing, degree of segmentation, chip deformation coefficient, shear angle, and chip segmentation frequency also were experimentally investigated. Experimental results showed that the very high strain in the shear band does give rise to the high temperature in higher hardness material and at higher cutting speed and this makes the high-speed slip of the shear band much easier happen along existing micro-crack. The critical chip is produced at a cutting speed of 50 m/min and a hardness level of 50 +/- 1 HRC. The strain rate increases with the increments of the cutting speed, which increases brittleness, and thus induces acceleration of the crack propagation speed in shear band. Moreover, the increments of the quenching hardness can increase the brittleness of the workpiece and thus lead to the large damage in shear band. The microstructure of the material within the bottom of chip showed that the elongated grains do appear due to thermo-mechanical effect between the chip back and the rake face of the cutting tool.
机译:在干硬转弯中形成的锯齿状芯片被认为是主要芯片类型之一。在本文中,主要目的是了解裂缝启动和传播的裂缝,以及来自力的热塑料不稳定性和压力有助于硬化钢的干燥硬高速正交转动(DHHOT)中锯齿状芯片的形成机制切割速度不同的硬度水平,50,450和850米/分钟。切削速度(50,450和850米/分钟)和工件硬度(40,45,50,55和60 +/- 1摇滚硬度(HRC)的影响对芯片形态,段间距,程度分段,芯片变形系数,剪切角和芯片分割频率也在实验上研究。实验结果表明,剪切带中的非常高的应变确实产生更高硬度材料的高温,并且在更高的切削速度下,这使得剪切带的高速滑动沿现有的微裂纹更容易发生。临界芯片以50m / min的切割速度和50 +/- 1 HRC的硬度水平产生。应变速率随着切割速度的增量而增加,这增加了脆性,从而引起剪切带中的裂纹传播速度的加速度。此外,淬火硬度的增量可以增加工件的脆性,从而导致剪切带中的大损坏。芯片底部内的材料的微观结构表明,由于切削工具的芯片背部和耙面之间的热机械效果,细长晶粒显得出现。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号