...
首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Computational analysis of turning G10530 steel to eliminate chip crowding using variable cutting speeds
【24h】

Computational analysis of turning G10530 steel to eliminate chip crowding using variable cutting speeds

机译:转动G10530钢的计算分析消除了可变切割速度消除芯片拥挤

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The machining of axle hub flange housings manufactured using G10530 steel is described in this paper. The machining of axle hub flange housings can lead to the entanglement of chips around workpiece holding fixtures, which leads to a loss of productivity due to the interruption of the machining process to remove entangled machining chips in the vicinity of the chuck (chip crowding). The finite element (FE) method was used to predict machining characteristics in order to eliminate the phenomenon of 'chip crowding' around rotating machine parts that impede the effective machining of axle hub flange housings. The finite element method is compared to traditional analytical calculations to observe whether discrete computations can accurately predict machining characteristics and to visually predict the shape of chips to eliminate the possibility of 'chip crowding'. From this study, it is shown that short chips can be created using variable cutting speeds and that the FE method can be used to analyze chip formations in order to optimize the turning of G10530 axle hub flange housings. For the current practice of machining axle hub housings, when f(edge)/t(r) = 0.25 (small cutting edge radius), the level of power required for chip formation is calculated to be 6400 W generating a maximum temperature at the onset of chip formation of similar to 563 degrees C, and when f(edge)/t(r) = 0.75 (large cutting edge radius), the level of power required for chip formation is calculated to be 3200 W generating a maximum temperature at the onset of chip formation of similar to 292 degrees C. When forming chips at variable cutting speeds, the best case condition is one that draws the least power and generates the lowest temperature at the chip tool interface. This is achieved when a large cutting edge radius tool (f(edge)/t(r) = 0.75) is used for machining axle hub flanges. Closed form solutions appear to describe the machining conditions at the steady-state conditions very accurately. However, the FE method tends to generate accurate values under the conditions of unsteady chip formation when cutting at variable speeds. The innovations presented in this paper are associated with providing the necessary information to machine axle hub flanges with variable cutting speeds that eliminate the occurrence of 'chip crowding' by naturally fragmenting the formation of long metal chips.
机译:本文描述了使用G10530钢制造的轴轮毂法兰壳体的加工。轴轮毂法兰壳体的加工可以导致工件保持夹具周围的芯片的缠结,这导致生产率的损失导致加工过程中断以在卡盘附近去除缠绕的加工芯片(筹装挤压)。有限元(Fe)方法用于预测加工特性,以消除旋转机器部件周围的“芯片挤拥有的现象”,该旋转机器部件妨碍轴轮毂法兰壳体的有效加工。将有限元方法与传统的分析计算进行比较,以观察离散计算是否可以准确地预测加工特性并视觉预测芯片的形状,以消除“芯片挤挤”的可能性。根据该研究,示出了可以使用可变切割速度来创建短芯片,并且Fe方法可用于分析芯片形成,以优化G10530轴毂法兰壳体的转弯。对于当前的加工轴毂壳体的实践,当F(边缘)/ T(R)= 0.25(小切削刃半径)时,芯片形成所需的电力水平计算为6400W在发起时产生最高温度芯片形成类似于563摄氏度,当F(边缘)/ T(R)= 0.75(大切削刃半径)时,计算芯片形成所需的电力水平为3200W,产生最高温度芯片形成的起作用类似于292℃。当在可变切割速度形成芯片时,最佳壳体条件是绘制最小功率并在芯片工具界面处产生最低温度的情况。当大型切削刃半径工具(F(边缘)/ T(R)= 0.75)用于加工轴毂法兰时,实现这一点。封闭式溶液似乎非常准确地描述稳态条件下的加工条件。然而,在以可变速度切割时,Fe方法倾向于在不稳定的芯片形成条件下产生准确的值。本文提出的创新与将必要的信息提供给机器轴毂法兰,通过可变切割速度,通过自然地支离长金属芯片的形成消除了“芯片挤挤”的发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号