首页> 外文期刊>Current Science: A Fortnightly Journal of Research >Classification of instabilities in the flow past flexible surfaces
【24h】

Classification of instabilities in the flow past flexible surfaces

机译:通过柔性表面的流动中的不稳定性分类

获取原文
获取原文并翻译 | 示例
       

摘要

The stability of the laminar flow in flexible tubes and channels could be influenced by the flexibility of the walls, and these instabilities are qualitatively different from those in rigid tubes and channels. In this paper, the instabilities of the laminar flow in flexible tubes and channels are classified according to the asymptotic regime in which they are observed, the flow structure, the scaling of the critical Reynolds number (rho VR/mu) with the dimensionless parameter Sigma = (rho GR(2)/mu(2)), and the mechanism that destabilizes the flow. Here, rho and mu are the fluid density and viscosity, G is the sheer modulus of the walt material, R is the cross stream length scale and V is the maximum velocity, Three types of instabilities have been analysed. The viscous instability is observed in the limit of low Reynolds number when the fluid inertia is insignificant, and the critical Reynolds number scales as Re proportional to Sigma, The destabilizing mechanism is the transfer of energy from the mean flow to the fluctuations due to the shear work done by the mean flow at the surface. In the high Reynolds number inviscid modes, the critical Reynolds number scales are Re proportional to Sigma(1/2), and there is a critical layer of thickness Re-1/3 where viscous stresses are important, The destabilizing mechanism is the transfer of energy from the mean flow to the fluctuations due to the Reynolds stresses in the critical layer. The high Reynolds number wall mode instability has a wall layer of thickness Re-1/3 at the wall, where viscous stresses are important and the critical Reynolds number scales as Re proportional to Sigma(3/4). The destabilizing mechanism is the transfer of energy from the mean flow to the fluctuations due to the shear work done by the mean flow at the interface. [References: 30]
机译:柔性管和通道中层流的稳定性可能会受到壁的柔性的影响,并且这些不稳定性与刚性管和通道中的不稳定性在质量上有所不同。在本文中,根据观察到的渐近状态,流动结构,临界雷诺数(rho VR / mu)的比例和无量纲参数Sigma,对挠性管和通道中层流的不稳定性进行分类。 =(rho GR(2)/ mu(2)),以及使流量不稳定的机制。在此,rho和mu是流体密度和粘度,G是华特材料的绝对模量,R是横流长度尺度,V是最大速度,已经分析了三种类型的不稳定性。当流体惯性不明显时,在低雷诺数的极限中观察到粘性不稳定性,临界雷诺数的比例缩放为Re与Sigma成正比。失稳机理是能量从平均流向剪切力引起的波动转移通过表面平均流量完成的工作。在高雷诺数无粘模式下,临界雷诺数标度与Sigma(1/2)成正比,并且在厚度为Re-1 / 3的临界层中,粘性应力很重要。从平均流量到临界层雷诺应力引起的波动所产生的能量。高雷诺数壁模不稳定性在壁处具有厚度为Re-1 / 3的壁层,其中粘性应力很重要,临界雷诺数的比例缩放为Re与Sigma(3/4)成比例。失稳机制是能量从平均流量到由于界面处的平均流量完成的剪切功而引起的波动传递。 [参考:30]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号