首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Determination of the yield loci of four sheet materials (AA6111-T4, AC600, DX54D+Z, and H220BD+Z) by using uniaxial tensile and hydraulic bulge tests
【24h】

Determination of the yield loci of four sheet materials (AA6111-T4, AC600, DX54D+Z, and H220BD+Z) by using uniaxial tensile and hydraulic bulge tests

机译:使用单轴拉伸和液压凸起测试测定四片材料(AA6111-T4,AA611-T4,AC600,DX54d + Z和H220BD + Z)的屈服基因座

获取原文
获取原文并翻译 | 示例
           

摘要

In sheet metal forming simulation, a flow curve and a yield criterion are vital requirements for obtaining reliable numerical results. It is more appropriate to determine a flow curve by using biaxial stress condition tests, such as the hydraulic bulge test, than a uniaxial test because hardening proceeds higher strains before necking occurs. In a uniaxial test, higher strains are extrapolated, which might lead to incorrect results. The bulge test, coupled with the digital image correlation (DIC) system, is used to obtain stress-strain data. In the absence of the DIC system, analytical methods are used to estimate hardening. Typically, such models incorporate a correction factor to achieve correlation to experimental data. An example is the Chakrabarty and Alexander method, which uses a correction factor based on the n value. Here, the Chakrabarty and Alexander approach was modified using a correction factor based on normal anisotropy. When compared with DIC data, the modified model was found to be able to better predict the hardening curves for the materials examined in this study. Because a biaxial flow curve is required to compute the biaxial yield stress, which is an essential input to advanced yield functions, the effects of the various approaches used to determine the biaxial stress-strain data on the shape of the BBC2005 yield loci were also investigated. The proposed method can accurately predict the magnitude of the biaxial yield stress, when compared with DIC data, for all materials investigated in this study.
机译:在金属板形成模拟中,流动曲线和产量标准是获得可靠数值结果的重要要求。通过使用双轴应力条件测试来确定流动曲线,例如液压凸起试验比单轴试验更合适,因为在缩颈之前硬化在缩颈之前进行更高的菌株。在单轴试验中,较高的菌株被推断,这可能导致结果不正确。耦合与数字图像相关(DIC)系统耦合的凸起测试用于获得应力 - 应变数据。在没有DIC系统的情况下,分析方法用于估计硬化。通常,这种模型包含校正因子,以实现与实验数据的相关性。一个例子是Chakrabarty和Alexander方法,它使用基于n值的校正因子。这里,使用基于正常各向异性的校正因子来修改Chakrabarty和Alexander方法。与DIC数据相比,发现修改模型能够更好地预测本研究中检查的材料的硬化曲线。因为双轴流量曲线需要计算双轴屈服应力,这是一个重要的输入到先进屈服函数,所述各种方法的效果所使用以确定对BBC2005屈服轨迹的形状的双轴应力 - 应变数据进行了研究。当本研究中研究的所有材料相比,该方法可以准确地预测双轴屈服应激的大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号