首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Estimation of clad geometry and corresponding residual stress distribution in laser melting deposition: analytical modeling and experimental correlations
【24h】

Estimation of clad geometry and corresponding residual stress distribution in laser melting deposition: analytical modeling and experimental correlations

机译:激光熔化沉积中包层几何形状及相应残余应力分布的估计:分析建模与实验相关性

获取原文
获取原文并翻译 | 示例
       

摘要

Laser melting deposition (LMD) is a promising technology to produce net-shape parts. The deposited layers' characteristics and induced residual stress distribution influence the quality, mechanical, and physical properties of the manufactured parts. In this study, two theoretical models are presented. Initially, the clad geometry of the 1st deposited layer is estimated using the primary process parameters. Then, a hatch distance is used to calculate the re-melting depth and total clad geometry for all the deposited layers. The output of the 1st model is then used as an input in the 2nd model to estimate the residual stress distribution within the substrate and deposited layers. The model, for clad geometry, is validated using published experimental data for the depositions of AISI316L powder debits on AISI321 bulk substrate by the LMD process. For the residual stress distribution model validation, the published experimental results for X-ray diffractometry, in case of AISI4340 steel powder debits depositions on the AISI4140 bulk substrate by the LMD setup, are used. It was found that the current models can estimate the clad geometry and induced residual stress distribution with an accuracy of 10-15 % mean absolute deviation. An optimum selection of hatch distance is necessary for proper energy density utilization and dimensional control stability. The induced residual stress distribution was caused by the heating and cooling mechanisms, which appeared due to rapid heating and moderate cooling, in combination with slow conduction. These phenomena became incrementally iterative with the number of layers to be deposited, thus presenting a direct relationship between the residual stress distribution and the number of layers deposited on the substrate. The proposed models have high computational efficiency without restoring the meshing and iterative calculations. The high prediction accuracy and computational efficiency allow the presented model to investigate further the part distortion, part porosity, life-expectancy and mechanical properties of the part, and process parameter planning.
机译:激光熔化沉积(LMD)是生产网状零件的有希望的技术。沉积的层的特性和诱导的残余应力分布会影响制造部件的质量,机械和物理性质。在这项研究中,提出了两种理论模型。最初,使用主要过程参数估计第一沉积层的包层几何形状。然后,用舱口距离用于计算所有沉积层的重新熔化深度和总包层几何形状。然后将第一模型的输出用作第二模型中的输入,以估计基板和沉积层内的残余应力分布。使用已发表的实验数据验证了用于通过LMD工艺对AISI321散装衬底的AISI316L粉末借鉴的公布实验数据进行验证的模型。对于残余应力分布模型验证,使用了X射线衍射测定的已发表的实验结果,如AISI4340钢粉的情况下,使用LMD设置借助AISI4140散装衬底的沉积。结果发现,目前的模型可以估计包层几何形状,并诱导残留应力分布,精度为10-15%的绝对偏差。对于适当的能量密度利用和尺寸控制稳定性,需要最佳选择舱口距离。诱导的残余应力分布是由加热和冷却机制引起的,该加热机构由于快速加热和中等冷却而出现,与缓慢的传导组合。这些现象与要沉积的层数逐渐迭代,从而呈现残余应力分布与沉积在基板上的层数之间的直接关系。所提出的模型具有高的计算效率而无需恢复啮合和迭代计算。高预测精度和计算效率允许所提出的模型进一步研究部分的零件畸变,部分孔隙,寿命和机械性能,以及工艺参数规划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号