...
首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Predicting the Johnson Cook constitutive model constants using temperature rise distribution in plane strain machining
【24h】

Predicting the Johnson Cook constitutive model constants using temperature rise distribution in plane strain machining

机译:预测使用温度升高分布在平面应变加工中的Johnson Cook本构模型常数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Johnson-Cook (JC) constitutive material model is the most common, yet simplest, model to describe the material behavior in machining that involves high strain and high strain rates accompanied with high temperature rise. Many studies have tried to predict JC model constants using computational and analytical procedures. However, these approaches are limited by computational costs and experimental restrictions. In this study, an original approach to determine the JC material model constants is proposed using the effects imposed by strain hardening, strain rate hardening, and thermal softening. An analytical approach is established upon the chip formation model in orthogonal cutting—plane strain machining—where the JC model is applied to calculate cutting energy due to plasticity and friction which ultimately involves temperature rise. Temperature is calculated at primary shear zone and secondary deformation zone using Oxley and modified Hahn’s models, which are dependent on material behavior and five JC constants. JC constants are calculated by performing a multi-objective optimization algorithm that searches for the minimum differences between the calculated temperature in the chip and the experimental results of temperature for different cutting conditions. The obtained JC constants are compared with the literature and close agreements are achieved. The appeal of the proposed methodology is in its low computational time, low experimental complexity, and low mathematical complexity. Finally, JC constants were used in finite element simulation of PSM to verify the model’s robustness and accuracy via comparing the cutting force, temperature distribution, and subgrain size of the chip for different cutting conditions.
机译:Johnson-Cook(JC)构成材料模型是最常见的,最简单的模型,用于描述加工中的材料行为,涉及高应变和高应变速率伴随着高温升高。许多研究试图使用计算和分析程序预测JC模型常数。然而,这些方法受到计算成本和实验限制的限制。在该研究中,使用应变硬化,应变率硬化和热软化施加的效果来提出确定JC材料模型常数的原始方法。在正交切割面应变加工中的芯片形成模型时建立了一种分析方法 - 其中应用JC模型以计算由于塑性和摩擦而计算切削能量,最终涉及温度升高。使用奥克斯利和改进的Hahn的模型在初级剪切区和二次变形区中计算温度,这取决于材料行为和五个JC常数。通过执行多目标优化算法来计算JC常数,该算法搜索芯片中计算的温度与温度的实验结果进行不同的切割条件的最小差异。获得的JC常数与文献和近距离协议进行比较。所提出的方法的吸引力在其低计算时间,实验性复杂性低,数学复杂性低。最后,JC常数用于PSM的有限元模拟,通过比较芯片的切割力,温度分布和芯片的子粒尺寸来验证模型的鲁棒性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号