首页> 外文期刊>Biosemiotics >Molecular Codes Through Complex Formation in a Model of the Human Inner Kinetochore
【24h】

Molecular Codes Through Complex Formation in a Model of the Human Inner Kinetochore

机译:通过人类内部动线粒模型复杂形成的分子密码。

获取原文
获取原文并翻译 | 示例
       

摘要

We apply molecular code theory to a rule-based model of the human inner kinetochore and study how complex formation in general can give rise to molecular codes. We analyze 105 reaction networks generated from the rule-based inner kinetochoremodel in two variants: with and without dissociation of complexes. Interestingly, we found codes only when some but not all complexes are allowed to dissociate. We show that this is due to the fact that in the kinetochore model proteins can only bind at kinetochores by attaching to already attached proteins and cannot form complexes in free solution. Using a generalized linear mixed model we study which centromere protein (CENP) can take which role in a molecular code (sign, meaning, context). By this, associations between CENPs (CenpA, CenpQ, CenpU and CenpI) and code roles are found.We observed that CenpA is a major risk factor (increases probability for code role) while CenpQ is a major protection factor (decreases probability for code role). Finally we show, using an abstract model of copolymer formation, that molecular codes can also be realized solely by the formation of stable complexes, which do not dissociate. For example, with particular dimers as context a molecular code mapping from two different monomers to two particular trimers can be realized just by non-selective complex formation. We conclude that the formation of protein complexes can be utilized by the cell to implement molecular codes. Living cells thus facilitate a subsystem allowing for an enormous flexibility in the realization of mappings, which can be used for specific regulatory processes, e.g. via the context of a mapping.
机译:我们将分子密码理论应用于人类内部动粒体的基于规则的模型,并研究复杂的形成一般如何产生分子密码。我们分析了基于规则的内部动力学模型在两个变体中生成的105个反应网络:有和没有复合物的解离。有趣的是,我们仅在允许部分而非全部复合物分解时才找到代码。我们表明,这是由于以下事实:在动线粒体模型中,蛋白质只能通过连接到已经附着的蛋白质而在动粒体上结合,而不能在游离溶液中形成复合物。使用广义线性混合模型,我们研究了哪个着丝粒蛋白(CENP)在分子代码(符号,含义,上下文)中可以发挥哪个作用。由此发现了CENP(CenpA,CenpQ,CenpU和CenpI)与代码角色之间的关联。我们观察到CenpA是主要的危险因素(增加代码角色的可能性),而CenpQ是主要的保护因素(减少代码角色的可能性) )。最后,我们使用共聚物形成的抽象模型表明,分子代码也可以仅通过不解离的稳定络合物的形成来实现。例如,在特定二聚体的情况下,仅通过非选择性配合物形成就可以实现从两个不同单体到两个特定三聚体的分子密码映射。我们得出结论,细胞可以利用蛋白质复合物的形成来实现分子编码。因此,活细胞促进了子系统的实现,从而在实现映射方面具有极大的灵活性,该映射可用于特定的监管流程,例如:通过映射的上下文。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号