...
首页> 外文期刊>Physics of plasmas >Probing suprathermal electrons by trace rare gases optical emission spectroscopy in low pressure dipolar microwave plasmas excited at the electron cyclotron resonance
【24h】

Probing suprathermal electrons by trace rare gases optical emission spectroscopy in low pressure dipolar microwave plasmas excited at the electron cyclotron resonance

机译:通过痕量稀有气体探测Suprathermal电子在电子回火中激发低压偶极微波等离子体中的光发射光谱

获取原文
获取原文并翻译 | 示例
           

摘要

In microwave plasmas with the presence of a magnetic field, fast electrons could result from collisionless energy absorption under electron cyclotron resonance (ECR) conditions. In this case, electrons are trapped between the two poles of the magnetic field and rotate at the cyclotron frequency omega(ce). When crossing a zone where the cyclotron frequency equals the microwave frequency (omega(ce) = omega), electrons see a steady electric field in their reference frame and are constantly accelerated by the right handed polarized (RHP) wave. When the plasma density reaches the so-called critical density n(c) at which omega(2)(pe) = omega(2)+/-omega omega(ce), where omega(pe) is the plasma electron frequency, the left handed polarized (LHP) electromagnetic wave can excite electrostatic waves that can produce collisionless electron heating and fast electron generation by Landau damping. In this study, a combination of the Langmuir probe and trace rare gas optical emission spectroscopy (TRG-OES) is used to analyze the electron energy probability function (EEPF) in microwave (2.45 GHz) low-pressure argon plasmas excited at ECR in a dipolar magnetic field. While both TRG-OES and Langmuir probe measurements agree on the effective electron temperature (T-e(All)) from 1.6 to 50 mTorr, TRG-OES, which is more sensitive to high energy electrons, shows that the EEPF is the sum of two Maxwellian populations: one described by T-e(All) and a high energy tail characterized by a temperature T-e(Tail). Spatially resolved-TRG-OES measurements show that the high-energy tail (T-e(Tail)) in the EEPF is spatially localized near the magnet, while the effective electron temperature (T-e(All)) stays constant. The ratio between the high energy tail and the effective temperatures is found to increase with the absorbed microwave power and decrease with increasing pressure. The former phenomenon is ascribed to a rise in ECR heating due to a stronger RHP wave electric field and to an enhanced absor
机译:在与磁场的存在的微波等离子体,快电子可能会导致从电子回旋共振(ECR)条件下碰撞能量吸收。在这种情况下,电子被捕获在回旋频率的ω(CE)的磁场和旋转的两极之间。当穿越其中回旋加速器频率等于微波频率的区域(欧米加(CE)=欧米加),电子看到他们的参考帧中的稳定的电场和由右不断加速递给极化(RHP)波。当等离子体密度达到所谓的临界密度n(C),在该欧米加(2)(PE)=欧米加(2)+/-欧米茄(CE),其中的ω(PE)是等离子体电子频率,左旋偏振(LHP)电磁波可激发静电波可以由朗道阻尼产生碰撞电子加热和快速电子产生。在这项研究中,朗缪尔探针的组合和微量稀有气体发射光谱(TRG-OES)来分析在微波(2.45千兆赫)的电子能量概率函数(EEPF)低压氩气中在ECR激发等离子体偶极磁场。尽管两种TRG-OES和Langmuir探针测量的有效电子温度(TE(全部))为1.6〜50毫托同意,TRG-OES,这是高能电子更敏感,表明EEPF是二麦克斯韦的总和种群:由碲(全部)中描述的一个和高能量尾特征在于温度Te(尾)。空间分辨-TRG-OES测量表明高能尾(T-E(尾))在被EEPF空间定位在磁体附近,而有效的电子温度(T-E(全部))保持不变。高能量尾部和有效温度之间的比率被发现以增加与吸收的微波功率和随着压力降低。前者现象归因于在ECR加热由于更强的RHP的上升波电场,并增强absor

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号