...
首页> 外文期刊>Physics of plasmas >A new method for analyzing and visualizing plasma simulations using a phase-space tessellation
【24h】

A new method for analyzing and visualizing plasma simulations using a phase-space tessellation

机译:一种使用相位空间镶嵌分析和可视化等离子体模拟的新方法

获取原文
获取原文并翻译 | 示例
           

摘要

We apply a novel phase-space interpolation technique referred to as the simplex-in-cell (SIC) method to analyze two- and three-dimensional particle-in-cell (PIC) simulations of electromagnetic plasmas. SIC relies on a discretization of the initial phase-space distribution function into simplices, which allows an approximation to the full, continuously defined distribution function to be constructed at any later time in the simulation. This allows densities, currents, and even full momentum distribution functions to be measured at any point in the simulation domain without averaging over control volumes. The SIC approach applies to any PIC simulation for which a tessellation of the initial particle distribution can be constructed. In this study, we use outputs from standard PIC simulations of the Weibel instability and compare physical quantities such as charge and current densities calculated in postprocessing using SIC and standard particle deposits. Using 2D simulations with 1-65 536 particles-per-cell, we find that SIC eliminates discrete particle noise and in some cases can reach a given noise level using similar to 1000 times fewer simulation particles than with standard particle deposition schemes. In regions of low density, such as between current filaments, SIC is able to capture small amplitude features even with fewer particles than gridpoints due to the deformable nature of the SIC volume elements. By calculating momentum distributions, we show how SIC can capture low density tails in the spectrum using far fewer particles than are necessary for standard particle deposits. We calculate the charge density on spatial grids of increasing resolution to demonstrate the ability of SIC to reveal fine-scale details that are not accessible with standard particle deposits. Finally, we show how SIC can be extended to 3D and give an example of its use to calculate the charge density from 3D PIC simulations of the Weibel instability. These results motivate the future
机译:我们应用了一种新的相位空间内插技术被称为单面在细胞(SIC)方法来分析二维和三维粒子在细胞(PIC)电磁等离子体的模拟。 SIC依赖于离散的初始相位空间分布函数成单纯形,这允许近似要充分,连续地定义分布函数在模拟任何稍后的时间来构成。这允许密度,电流和甚至完全动量分布函数来在模拟域中的任何点,而无需平均超过控制体积来测量。该SIC方法适用于对可以被构造初始颗粒分布的一个镶嵌任何PIC模拟。在这项研究中,我们使用从威贝尔不稳定的标准PIC模拟输出和比较物理量如电荷和在使用SIC和标准粒子沉积后处理计算出的电流密度。使用二维模拟与1-65 536颗粒的每单元中,我们发现,SIC消除离散粒子的噪声和在某些情况下可以达到使用比用标准粒子沉积方案类似于1000倍更少仿真颗粒的给定的噪声电平。在低的密度,例如电流长丝之间的区域中,SIC是能够捕捉到小振幅甚至比格点的颗粒更少的特征归因于SIC体积元件的可变形性质。通过计算动量分布,我们将展示SIC如何使用少得多的颗粒比所必需的标准粒子存款频谱捕捉低密度尾巴。我们计算在提高分辨率来证明SIC的揭示精细尺度细节,不符合标准的颗粒沉积物访问能力的空间格栅的电荷密度。最后,我们将展示SIC如何扩展到3D,并给其使用从维贝尔不稳定的3D PIC模拟计算电荷密度的例子。这些结果激励未来

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号