...
首页> 外文期刊>Physics of plasmas >Optimization of gas-filled quartz capillary discharge waveguide for high-energy laser wakefield acceleration
【24h】

Optimization of gas-filled quartz capillary discharge waveguide for high-energy laser wakefield acceleration

机译:用于高能量激光韦克菲尔德加速的气体填充石英毛细管排放波导的优化

获取原文
获取原文并翻译 | 示例

摘要

A hydrogen-filled capillary discharge waveguide made of quartz is presented for high-energy laser wakefield acceleration (LWFA). The experimental parameters (discharge current and gas pressure) were optimized to mitigate ablation by a quantitative analysis of the ablation plasma density inside the hydrogen-filled quartz capillary. The ablation plasma density was obtained by combining a spectroscopic measurement method with a calibrated gas transducer. In order to obtain a controllable plasma density and mitigate the ablation as much as possible, the range of suitable parameters was investigated. The experimental results demonstrated that the ablation in the quartz capillary could be mitigated by increasing the gas pressure to similar to 7.5-14.7 Torr and decreasing the discharge current to similar to 70-100 A. These optimized parameters are promising for future high-energy LWFA experiments based on the quartz capillary discharge waveguide. Published by AIP Publishing.
机译:提出了一种由石英制成的填充毛细管放电波导,用于高能激光韦克菲尔德加速(LWFA)。 优化实验参数(放电电流和气体压力)以通过定量分析填充的石英毛细管内的消融等离子体密度来减轻消融。 通过将光谱测量方法与校准的气体换能器组合来获得消融等离子体密度。 为了获得可控等离子体密度并尽可能地减轻消融,研究了合适的参数范围。 实验结果表明,石英毛细管中的消融可以通过增加20-14.7托的气体压力来减轻和减少与70-100A类似的放电电流。这些优化的参数对于未来的高能量LWFA是有希望的 基于石英毛细管排出波导的实验。 通过AIP发布发布。

著录项

  • 来源
    《Physics of plasmas 》 |2018年第4期| 共8页
  • 作者单位

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号