...
首页> 外文期刊>Physical review, B >Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks
【24h】

Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks

机译:Andreev绑定状态与量子点 - 纳米线超导体混合结构中的Majorana绑定状态:琐碎与拓扑零偏置电导峰值

获取原文
获取原文并翻译 | 示例
           

摘要

Motivated by an important recent experiment [Deng et al., Science 354, 1557 (2016)], we theoretically consider the interplay between Andreev and Majorana bound states in disorder-free quantum dot-nanowire semiconductor systems with proximity-induced superconductivity in the presence of spin-orbit coupling and Zeeman spin splitting (induced by an external magnetic field). The quantum dot induces Andreev bound states in the superconducting nanowire, which show complex behavior as a function of magnetic field and chemical potential, and the specific question is whether two such Andreev bound states can come together forming a robust zero-energy topological Majorana bound state. We find generically that the Andreev bound states indeed have a high probability of coalescing together producing near-zero-energy midgap states as Zeeman splitting and/or chemical potential are increased, but this mostly happens in the nontopological regime below the topological quantum phase transition, although there are situations where the Andreev bound states could indeed come together to form a zero-energy topological Majorana bound state. The two scenarios (two Andreev bound states coming together to form a nontopological almost-zero-energy Andreev bound state or to form a topological zero-energy Majorana bound state) are difficult to distinguish just by tunneling conductance spectroscopy, since they produce essentially the same tunneling transport signatures. We find that the "sticking together" propensity of Andreev bound states to produce an apparent stable zero-energy midgap state is generic in class D systems in the presence of superconductivity, spin-orbit coupling, and magnetic field, even in the absence of any disorder. We also find that the conductance associated with the coalesced zero-energy nontopological Andreev bound state is nonuniversal and could easily be 2e(2)/h, mimicking the quantized topological Majorana zerobias conductance value. We suggest experimental techniques for distinguishing between trivial and topological zero-bias conductance peaks arising from the coalescence of Andreev bound states.
机译:由最近的最近实验的动机[Deng等人,科学354,1557(2016)],理论上,理论上考虑了在存在的无序量子线点纳米线半导体系统中的Andreev和Majorana绑定状态之间的相互作用在存在下具有邻近诱导的超导性旋转轨道耦合和塞曼旋转分裂(由外部磁场引起)。量子点在超导纳米线中引起Andreev绑定状态,其显示复杂的行为作为磁场和化学潜力的函数,具体问题是两个这样的Andreev绑定状态可以聚集在一起形成鲁棒零能量拓扑马太基亚纳绑定状态。我们在慷慨地发现,Andreev绑定状态确实具有在Zeeman分裂和/或化学潜力增加的近零能量中光态的高概率,并且这主要发生在拓扑量子转移以下的非疏透政权中,虽然有andreev绑定状态确实可以聚集在一起以形成零能量拓扑马太蚌的情况。这两种情况(两个和肾脏绑定状态在一起形成一个非归零 - 零能量Andreev绑定状态或形成拓扑零能量Majorana绑定状态)难以仅通过隧道电导光谱来区分,因为它们基本生产隧道运输签名。我们发现,在存在超导,旋转轨道耦合和磁场的情况下,在D类系统中,“坚持在一起”的“坚持”倾向于产生明显的稳定零能量的零能量。即使在没有任何内容紊乱。我们还发现与聚结的零能量非能源andreev绑定状态相关的电导是非同意性的,并且可以很容易地是2e(2)/ h,模仿量化的拓扑马克扎鼠电弓扎电阻值。我们建议区分从AndreeV束缚状态的聚结产生的微型和拓扑零偏置电导峰之间的实验技术。

著录项

  • 来源
    《Physical review, B》 |2017年第7期|共29页
  • 作者单位

    Univ Maryland Condensed Matter Theory Ctr Dept Phys College Pk MD 20742 USA;

    Univ Maryland Condensed Matter Theory Ctr Dept Phys College Pk MD 20742 USA;

    Univ Maryland Condensed Matter Theory Ctr Dept Phys College Pk MD 20742 USA;

    Univ Maryland Condensed Matter Theory Ctr Dept Phys College Pk MD 20742 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号