...
首页> 外文期刊>Physical review, B >General procedure for the calculation of accurate defect excitation energies from DFT-1/2 band structures: The case of the NV- center in diamond
【24h】

General procedure for the calculation of accurate defect excitation energies from DFT-1/2 band structures: The case of the NV- center in diamond

机译:从DFT-1/2带结构计算精确缺陷励磁能量的一般程序:钻石中NV-中心的情况

获取原文
获取原文并翻译 | 示例
           

摘要

A major challenge in creating a quantum computer is to find a quantum system that can be used to implement the qubits. For this purpose, deep centers are prominent candidates, and ab initio calculations are one of the most important tools to theoretically study their properties. However, these calculations are highly involved, due to the large supercell needed, and the computational cost can be even larger when one goes beyond the Kohn-Sham scheme to correct the band gap problem and achieve good accuracy. In this work, we present a method that overcomes these problems and provides the optical transition energies as a difference of Kohn-Sham eigenvalues; even more, provides a complete and accurate band structure of the defects in a semiconductor. Despite the original motivations, the presented methodology is a general procedure, which can be used to systematically study the optical transitions between localized levels within the band gap of any system. The method is an extension of the low-cost and parameter-free DFT-1/2 approximate quasiparticle correction, and allows it to be applied in the study of complex defects. As a benchmark, we apply the method to the NV- center in diamond. The agreement with experiments is remarkable, with an accuracy of 0.1 eV. The band structure agrees with the expected qualitative features of this system, and thus provides a good intuitive physical picture by itself.
机译:创建量子计算机时的主要挑战是找到可用于实现QUBITS的量子系统。为此目的,深度中心是突出的候选人,AB Initio计算是理论上研究其性质的最重要的工具之一。然而,由于所需的大型超级电池,这些计算非常涉及,并且当一个超出Kohn-Shame方案以纠正带隙问题并达到良好准确性时,计算成本可能更大。在这项工作中,我们提出了一种克服了这些问题的方法,并提供了光学过渡能量作为Kohn-MameGenvalues的差异;甚至更多,提供半导体中的缺陷的完整和准确的频带结构。尽管原始的动机,所呈现的方法是一种通用程序,其可用于系统地研究局部水平之间的光学转换在任何系统的带隙内。该方法是低成本和无参数DFT-1/2近似Quasiparticle校正的延伸,并允许其应用于复杂缺陷的研究。作为基准,我们将该方法应用于钻石中的NV中心。与实验的协议是显着的,精度为0.1eV。频带结构同意该系统的预期定性特征,因此自身提供了良好的直观物理图片。

著录项

  • 来源
    《Physical review, B》 |2017年第7期|共9页
  • 作者单位

    Technol Inst Aeronaut ITA Grp Mat Semicond &

    Nanotecnol BR-12228900 Sao Jose Dos Campos SP Brazil;

    Univ Sao Paulo Inst Phys BR-05315970 Sao Paulo SP Brazil;

    Technol Inst Aeronaut ITA Grp Mat Semicond &

    Nanotecnol BR-12228900 Sao Jose Dos Campos SP Brazil;

    Technol Inst Aeronaut ITA Grp Mat Semicond &

    Nanotecnol BR-12228900 Sao Jose Dos Campos SP Brazil;

    Technol Inst Aeronaut ITA Grp Mat Semicond &

    Nanotecnol BR-12228900 Sao Jose Dos Campos SP Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号