...
首页> 外文期刊>Physical review, B >Variational cluster approach to thermodynamic properties of interacting fermions at finite temperatures: A case study of the two-dimensional single-band Hubbard model at half filling
【24h】

Variational cluster approach to thermodynamic properties of interacting fermions at finite temperatures: A case study of the two-dimensional single-band Hubbard model at half filling

机译:有限温度交互互动性能的变分簇方法:半填充二维单带哈布德模型的案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

We formulate a finite-temperature scheme of the variational cluster approximation (VCA) particularly suitable for an exact-diagonalization cluster solver. Based on the analytical properties of the single-particle Green's function matrices, we explicitly show the branch-cut structure of logarithm of the complex determinant functions appearing in the self-energy-functional theory (SFT) and whereby construct an efficient scheme for the finite-temperature VCA. We also derive the explicit formulas for entropy and specific heat within the framework of the SFT. We first apply the method to explore the antiferromagnetic order in a half-filled Hubbard model by calculating the entropy, specific heat, and single-particle excitation spectrum for different values of on-site Coulomb repulsion U and temperature T. We also calculate the T dependence of the single-particle excitation spectrum in the strong coupling region, and discuss the overall similarities to and the fine differences from the spectrum obtained by the spin-density-wave mean-field theory at low temperatures and the Hubbard-I approximation at high temperatures. Moreover, we show a necessary and sufficient condition for the third law of thermodynamics in the SFT. On the basis of the thermodynamic properties, such as the entropy and the double occupancy, calculated via the T and/or U derivative of the grand potential, we obtain a crossover diagram in the (U, T) plane, which separates a Slater-type insulator and a Mott-type insulator. Next, we demonstrate the finite-temperature scheme in the cluster-dynamical-impurity approximation (CDIA), i.e., the VCA with noninteracting bath orbitals attached to each cluster, and study the paramagnetic Mott metal-insulator transition in the half-filled Hubbard model. Formulating the finite-temperature CDIA, we first address a subtle issue regarding the treatment of the artificially introduced bath degrees of freedom which are absent in the originally considered Hubbard model. We then apply the finite-temperature CDIA to calculate the finite-temperature phase diagram in the (U, T) plane. Metallic, insulating, coexistence, and crossover regions are distinguished from the bath-cluster hybridization-variational-parameter dependence of the grand-potential functional. We find that the Mott transition at low temperatures is discontinuous, and the coexistence region of the metallic and insulating states persists down to zero temperature. The result obtained here by the finite-temperature CDIA is complementary to the previously reported zero-temperature CDIA phase diagram.
机译:我们制定了特别适用于精确对角线簇求解器的变分簇近似(VCA)的有限温度方案。基于单粒子绿色函数矩阵的分析性质,我们明确地显示了在自能功能技术(SFT)中出现的复杂决定函数的对数的分支切割结构,从而构建了有限的有效方案 - 高温VCA。我们还在SFT的框架内获得了熵和特定热量的明确公式。我们首先通过计算熵,特定的热量和单粒子激发谱来探索半填充的Hubbard模型中的反铁磁顺序,用于在现场的内部库仑排斥u和温度T的不同值。我们也计算了T.单粒子激发谱在强耦合区域中的依赖性,并讨论了低温下旋转密度波平均场理论和高温下的旋转密度波平均场理论获得的整体相似之处和近距离 - 我近似温度。此外,我们对SFT中的热力学第三定律表达了必要和充分的条件。基于热力学性质,例如熵和双占用,通过隆起的T和/或U导数计算,我们在(U,T)平面中获得分隔落地的交叉图 - 型绝缘体和薄荷型绝缘体。接下来,我们证明了簇动态 - 杂质近似(CDIA)中的有限温度方案,即,具有连接到每个簇的非交互式浴轨道的VCA,并研究半填充的哈贝德模型中的顺磁薄膜金属绝缘体过渡。制定有限温度的CDIA,我们首先解决了关于人工引入的浴室自由度的治疗的微妙问题,这在最初认为的哈伯德模型中不存在。然后,我们应用有限温度的CDIA来计算(U,T)平面中的有限温度相图。金属,绝缘,共存和交叉区域与巨大潜在功能的浴室簇杂交 - 变分依赖性区别。我们发现低温下的Mott过渡是不连续的,金属和绝缘状态的共存区域持续到零温度。通过有限温度Cdia获得的结果与先前报道的零温度Cdia相图互补。

著录项

  • 来源
    《Physical review, B》 |2018年第20期|共37页
  • 作者单位

    SISSA Int Sch Adv Studies Via Bonomea 265 I-34136 Trieste Italy;

    SISSA Int Sch Adv Studies Via Bonomea 265 I-34136 Trieste Italy;

    RIKEN CPR Computat Condensed Matter Phys Lab Saitama 3510198 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号