首页> 外文学位 >Predicting Structures and Thermodynamic Properties for Molecular Crystals at Finite Temperatures.
【24h】

Predicting Structures and Thermodynamic Properties for Molecular Crystals at Finite Temperatures.

机译:在有限温度下预测分子晶体的结构和热力学性质。

获取原文
获取原文并翻译 | 示例

摘要

Molecular crystals occur in a variety of chemically relevant problems, including pharmaceuticals and organic semi-conductor materials. There has been much interest in developing computational models which can predict crystal structures and properties accurately and with reasonable computational expense. One such model, hybrid many-body interaction (HMBI), fragments a chemical system into monomer, dimer, and many-body interactions, each of which may be handled using a different level of theory. HMBI has been used to predict crystal structures, lattice energies, and relative polymorph stability, particularly in cases where other methods such as periodic density functional theory (DFT) have struggled.;This dissertation extends the HMBI model in two important ways. First, the computational cost of these calculations is significantly reduced by the development and implementation of an algorithm to exploit space group symmetry. This algorithm reduces the number of monomer and dimers calculations that need to be performed by eliminating symmetrically equivalent ones. Exploitation of space group symmetry provides additional computational savings during a crystal geometry optimization by reducing the number of degrees of freedom that need to be optimized, which tends to decrease the number of optimization steps required to reach convergence.;Second, the ability to predict molecular crystal structures and properties at finite temperature is developed by coupling the HMBI model with the quasi-harmonic approximation. Traditional approaches either neglect temperature or approximate it with a harmonic vibrational model. However, molecular crystals expand appreciably with temperature and this expansion has significant impacts on crystal properties. Typically, as crystals expand, the lattice energy weakens and the phonon modes soften. Neglecting this expansion causes thermochemical properties such as enthalpy and entropy to be overestimated near room temperature. The quasi-harmonic HMBI model is demonstrated to predict temperature-dependent molar volumes, thermochemistry, and mechanical properties in excellent agreement with experiment for several small-molecule crystals---carbon dioxide, ice, acetic acid, and imidazole. These developments also pave the way toward computational prediction of molecular crystal phase diagrams as a function of temperature and pressure. Preliminary results examining the high-pressure phase diagram of carbon dioxide are presented.
机译:分子晶体出现在许多与化学有关的问题中,包括药物和有机半导体材料。人们对开发能够精确预测晶体结构和性能并以合理的计算费用进行预测的计算模型非常感兴趣。一种这样的模型,混合多体相互作用(HMBI),将化学系统分为单体,二聚体和多体相互作用,每种相互作用都可以使用不同层次的理论来处理。 HMBI已被用于预测晶体结构,晶格能量和相对多晶型物的稳定性,特别是在诸如周期性密度泛函理论(DFT)等其他方法难以奏效的情况下。本论文从两个重要方面扩展了HMBI模型。首先,通过开发和实施利用空间群对称性的算法,可以大大降低这些计算的计算成本。该算法通过消除对称等价的计算减少了需要执行的单体和二聚体计算的数量。空间群对称性的利用通过减少需要优化的自由度数量,在晶体几何优化过程中提供了额外的计算节省,这往往减少了达到收敛所需的优化步骤的数量。第二,预测分子的能力通过将HMBI模型与准谐波近似耦合,可以开发出有限温度下的晶体结构和性能。传统方法要么忽略温度,要么使用谐波振动模型对其进行近似。然而,分子晶体随温度明显膨胀,并且这种膨胀对晶体性质具有重大影响。通常,随着晶体膨胀,晶格能量变弱,声子模变软。忽略这种膨胀会导致热化学性质(例如焓和熵)在室温附近被高估。准谐波HMBI模型被证明可以预测与温度有关的摩尔体积,热化学和机械性能,与几种小分子晶体(二氧化碳,冰,乙酸和咪唑)的实验非常吻合。这些进展也为分子晶体相图随温度和压力的计算预测铺平了道路。给出了检查二氧化碳高压相图的初步结果。

著录项

  • 作者

    Heit, Yonaton N.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Physical chemistry.;Analytical chemistry.;Organic chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:50:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号