首页> 外文期刊>Physical review, B >Optimization of edge state velocity in the integer quantum Hall regime
【24h】

Optimization of edge state velocity in the integer quantum Hall regime

机译:整数大厅政权中边缘状态速度的优化

获取原文
获取原文并翻译 | 示例
           

摘要

Observation of interference in the quantum Hall regime may be hampered by a small edge state velocity due to finite phase coherence time. Therefore designing two quantum point contact (QPCs) interferometers having a high edge state velocity is desirable. Here we present a new simulation method for designing heterostructures with high edge state velocity by realistically modeling edge states near QPCs in the integer quantum Hall effect (IQHE) regime. Using this simulation method, we also predict the filling factor at the center of QPCs and their conductance at different gate voltages. The 3D Schrodinger equation is split into 1D and 2D parts. Quasi-1D Schrodinger and Poisson equations are solved self-consistently in the IQHE regime to obtain the potential profile, and quantum transport is used to solve for the edge state wave functions. The velocity of edge states is found to be E / B, where E is the expectation value of the electric field for the edge state. Anisotropically etched trench gated heterostructures with double-sided delta doping have the highest edge state velocity among the structures considered.
机译:由于有限相位相干时间,通过小边缘状态速度,可以阻碍量子霍尔方案中的干扰的观察。因此,期望设计具有高边缘状态速度的两个量子点接触(QPCS)干涉仪。在这里,我们通过在整数霍尔效应(IQHE)制度附近的QPC附近的现实建模边缘状态来展示具有高边缘状态速度的异质结构的新模拟方法。使用该仿真方法,我们还预测QPC中心的填充系数及其在不同栅极电压下的电导。 3D Schrodinger方程分为1D和2D部件。在IQHE制度中,Quasi-1d Schrodinger和泊松方程在IQHE制度中自始终解决,以获得潜在的轮廓,并且使用量子传输用于解决边缘状态波函数。发现边缘状态的速度是E / B,其中E是边缘状态的电场的期望值。具有双面δ掺杂的各向异性蚀刻的沟槽外观结构具有所考虑的结构中的最高边缘状态速度。

著录项

  • 来源
    《Physical review, B》 |2018年第8期|共11页
  • 作者单位

    Purdue Univ Dept Phys &

    Astron W Lafayette IN 47907 USA;

    Purdue Univ Network Computat Nanotechnol W Lafayette IN 47906 USA;

    Purdue Univ Dept Phys &

    Astron W Lafayette IN 47907 USA;

    Purdue Univ Dept Phys &

    Astron W Lafayette IN 47907 USA;

    Purdue Univ Network Computat Nanotechnol W Lafayette IN 47906 USA;

    Purdue Univ Network Computat Nanotechnol W Lafayette IN 47906 USA;

    Purdue Univ Sch Elect &

    Comp Engn W Lafayette IN 47907 USA;

    Purdue Univ Dept Phys &

    Astron W Lafayette IN 47907 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号