...
首页> 外文期刊>Physical review, B >Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation
【24h】

Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation

机译:激素 - 极晶凝结托马斯 - 费米政权的直接测量Polariton-Polariton相互作用强度

获取原文
获取原文并翻译 | 示例

摘要

Bosonic condensates of exciton polaritons (light-matter quasiparticles in a semiconductor) provide a solid-state platform for studies of nonequilibrium quantum systems with a spontaneous macroscopic coherence. These driven, dissipative condensates typically coexist and interact with an incoherent reservoir, which undermines measurements of key parameters of the condensate. Here, we overcome this limitation by creating a high-density exciton-polariton condensate in an optically induced box trap. In this so-called Thomas-Fermi regime, the condensate is fully separated from the reservoir and its behavior is dominated by interparticle interactions. We use this regime to directly measure the polariton-polariton interaction strength, and reduce the existing uncertainty in its value from four orders of magnitude to within three times the theoretical prediction. The Thomas-Fermi regime has previously been demonstrated only in ultracold atomic gases in thermal equilibrium. In a nonequilibrium exciton-polariton system, this regime offers a novel opportunity to study interaction-driven effects unmasked by an incoherent reservoir.
机译:激子极性官(半导体中的灯具Quasiply)的络菌凝结物提供了一种用于研究非平衡量子系统的固态平台,具有自发的宏观相干性。这些驱动的耗散缩合物通常与不相停的储层共存并相互作用,其破坏了缩合物的关键参数的测量。在这里,我们通过在光学诱导的盒子陷阱中产生高密度激子 - 极性凝集物来克服这种限制。在这种所谓的托马斯 - 费米制度中,冷凝物与储层完全分离,其行为是由颗粒间相互作用的。我们使用这一制度直接测量Polariton-Polariton相互作用强度,并在其在理论预测的三次内从四个数量阶数减少其价值的现有不确定性。托马斯 - 费米制度以前仅在热平衡的超薄原子气体中展示。在一个非QuibiRibium-Polariton系统中,该制度提供了一种新颖的机会,用于研究由非电话储层未掩盖的相互作用驱动的效果。

著录项

  • 来源
    《Physical review, B 》 |2019年第3期| 共10页
  • 作者单位

    Australian Natl Univ Res Sch Phys &

    Engn Arc Ctr Excellence Future Low Energy Elect Techno Canberra ACT 2601 Australia;

    Tianjin Univ Inst Mol Plus Tianjin 300072 Peoples R China;

    Polish Acad Sci Inst Phys A Lotinikow 32-46 PL-02668 Warsaw Poland;

    Australian Natl Univ Res Sch Phys &

    Engn Arc Ctr Excellence Future Low Energy Elect Techno Canberra ACT 2601 Australia;

    PRESTO JST 4-1-8 Honcho Kawaguchi Saitama 3320012 Japan;

    Natl Renewable Energy Lab Golden CO 80401 USA;

    Princeton Univ Princeton Inst Sci &

    Technol Mat PRISM Princeton NJ 08544 USA;

    Princeton Univ Dept Elect Engn Princeton NJ 08544 USA;

    Monash Univ Arc Ctr Excellence Future Low Energy Elect Techno Melbourne Vic 3800 Australia;

    Monash Univ Arc Ctr Excellence Future Low Energy Elect Techno Melbourne Vic 3800 Australia;

    Nanyang Technol Univ Div Phys &

    Appl Phys Singapore Singapore;

    Polish Acad Sci Inst Phys A Lotinikow 32-46 PL-02668 Warsaw Poland;

    Univ Pittsburgh Dept Phys &

    Astron Pittsburgh PA 15260 USA;

    Australian Natl Univ Res Sch Phys &

    Engn Laser Phys Ctr Canberra ACT 2601 Australia;

    Australian Natl Univ Res Sch Phys &

    Engn Arc Ctr Excellence Future Low Energy Elect Techno Canberra ACT 2601 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号