...
首页> 外文期刊>Physical review, B >Electronic structure and p-type conduction mechanism of spinel cobaltite oxide thin films
【24h】

Electronic structure and p-type conduction mechanism of spinel cobaltite oxide thin films

机译:尖晶石钴岩薄膜的电子结构和P型传导机制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This work reports a fundamental study on the electronic structure, optical properties, and defect chemistry of a series of Co-based spinel oxide (Co3O4, ZnCo2O4, and CoAl2O4) epitaxial thin films using x-ray photoemission and absorption spectroscopies, optical spectroscopy, transport measurements, and density functional theory. We demonstrate that ZnCo2O4 has a fundamental bandgap of 1.3 eV, much smaller than the generally accepted values, which range from 2.26 to 2.8 eV. The valence band edge mainly consists of occupied Co 3d t(2g)(6) with some hybridization with O 2p/Zn 3d, and the conduction band edge of unoccupied e(g)* state. However, optical transition between the two band edges is dipole forbidden. Strong absorption occurs at photon energies above 2.6 eV, explaining the reasonable transparency of ZnCo2O4. A detailed defect chemistry study indicates that Zn vacancies formed at high oxygen pressure are the origin of a high p-type conductivity of ZnCo2O4, and the hole conduction mechanism is described by small-polaron hoping model. The high p-type conductivity, reasonable transparency, and large work function make ZnCo2O4 a desirable p-type transparent semiconductor for various optoelectronic applications. Using the same method, the bandgap of Co3O4 is further proved to be similar to 0.8 eV arising from the tetrahedrally coordinated Co2+ cations. Our work advances the fundamental understanding of these materials and provides significant guidance for their use in catalysis, electronic, and solar applications.
机译:这项工作报告了一种基于电子结构,光学性质和缺陷化学的基本研究,其使用X射线照片和吸收光谱,光谱,输送光谱,传输,传输,所述电子结构对一系列Co基尖晶石(CO3O4,ZnCo2O4和CaiL2O4)外延薄膜的基本研究测量和密度泛函理论。我们证明ZnCo2O4具有1.3eV的基本带隙,远小于普遍接受的值,范围为2.26到2.8eV。价频带边缘主要由占用的CO 3D T(2G)(6)与与O 2P / ZN 3D的杂交,以及未占用的E(G)*状态的导通带边缘。然而,两个带边缘之间的光学过渡是偶然的偶极子。在2.6eV以上的光子能量下发生强吸收,解释ZnCo2O4的合理透明度。一种详细的缺陷化学研究表明,在高氧气压力下形成的Zn空位是ZnCo2O4的高p型导电性的来源,并且通过小极化激发模型描述了空穴传导机构。高p型导电性,合理的透明度和大的功函数使ZnCo2O4成为各种光电应用的理想的P型透明半导体。使用相同的方法,进一步证明了CO 3O4的带隙与四面体协调的CO 2 +阳离子产生的0.8eV。我们的工作推进了对这些材料的根本理解,并为其在催化,电子和太阳能应用中使用了重大指导。

著录项

  • 来源
    《Physical review, B》 |2019年第11期|共9页
  • 作者单位

    Xiamen Univ Coll Chem &

    Chem Engn State Key Lab Phys Chem Solid Surfaces Xiamen 361005 Fujian Peoples R China;

    Xiamen Univ Coll Chem &

    Chem Engn State Key Lab Phys Chem Solid Surfaces Xiamen 361005 Fujian Peoples R China;

    Xiamen Univ Dept Phys Xiamen 361005 Fujian Peoples R China;

    Univ Elect Sci &

    Technol China Sch Phys Chengdu 610054 Sichuan Peoples R China;

    Univ Elect Sci &

    Technol China Sch Phys Chengdu 610054 Sichuan Peoples R China;

    Southern Univ Sci &

    Technol Dept Phys Shenzhen 518055 Guangdong Peoples R China;

    Diamond Light Source Ltd Harwell Sci &

    Innovat Campus Didcot OX11 0DE Oxon England;

    Australian Synchrotron 800 Blackburn Rd Clayton Vic 3168 Australia;

    La Trobe Univ Dept Chem &

    Phys Bundoora Vic 3086 Australia;

    Univ Elect Sci &

    Technol China Sch Phys Chengdu 610054 Sichuan Peoples R China;

    Southern Univ Sci &

    Technol Dept Phys Shenzhen 518055 Guangdong Peoples R China;

    Xiamen Univ Coll Chem &

    Chem Engn State Key Lab Phys Chem Solid Surfaces Xiamen 361005 Fujian Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号