...
首页> 外文期刊>Physics of fluids >A computational model of amoeboid cell swimming
【24h】

A computational model of amoeboid cell swimming

机译:作者:张莹莹

获取原文
获取原文并翻译 | 示例
           

摘要

Amoeboid cells propel by generating pseudopods that are finger-like protrusions of the cell body that continually grow, bifurcate, and retract. Pseudopod-driven motility of amoeboid cells represents a complex and multiscale process that involves bio-molecular reactions, cell deformation, and cytoplasmic and extracellular fluid motion. Here we present a 3D model of pseudopod-driven swimming of an amoeba suspended in a fluid without any adhesion and in the absence of any chemoattractant. Our model is based on front-tracking/immersed-boundary methods, and it combines large deformation of the cell, a coarse-grain model for molecular reactions, and cytoplasmic and extracellular fluid flow. The predicted shapes of the swimming cell from our model show similarity with experimental observations. We predict that the swimming behavior changes from random-like to persistent unidirectional motion, and that the swimming speed increases, with increasing cell deformability and protein diffusivity. The unidirectionality in cell swimming is observed without any external cues and as a direct result of a change in pseudopod dynamics. We find that pseudopods become preferentially focused near the front of the cell and appear in greater numbers with increasing cell deformability and protein diffusivity, thereby increasing the swimming speed and making the cell shape more elongated. We find that the swimming speed is minimum when the cytoplasm viscosity is close to the extracellular fluid viscosity. We further find that the speed increases significantly as the cytoplasm becomes less viscous compared with the extracellular fluid, resembling the viscous fingering phenomenon observed in interfacial flows. While these results support the notion that softer cells migrate more aggressively, they also suggest a strong coupling between membrane elasticity, membrane protein diffusivity, and fluid viscosity. Published by AIP Publishing.
机译:作用泛细胞通过产生伪质细胞的伪体细胞来推进,所述伪多孔是细胞体的指状突起,其连续地生长,分叉和缩回。作用泛孔细胞的伪多体驱动的动力是涉及生物分子反应,细胞变形和细胞质和细胞外液运动的复杂和多尺度过程。在这里,我们呈现了悬浮在液体中的Amoebod驱动游泳的3D模型,而没有任何粘附,并且在没有任何疗摸的情况下。我们的模型基于前跟踪/浸没边界方法,它结合了细胞的大变形,粗粒模型,用于分子反应和细胞质和细胞外液流。来自我们模型的游泳池的预测形状与实验观察显示相似之处。我们预测游泳行为从随机相似变化以持续的单向运动,并且游泳速度随着细胞变形性和蛋白质扩散性而增加。在没有任何外部线索的情况下观察到细胞游泳的单向性,并且作为伪动力变化的直接结果。我们发现假偶数优先聚焦在细胞的前部附近,并且随着细胞可变形性和蛋白质扩散性的增加而出现更大的数量,从而增加游泳速度并使细胞形状更长。我们发现当细胞质粘度接近细胞外液体粘度时,游泳速度最小。我们进一步发现,随着细胞质与细胞外液相比的粘性更少,速度显着增加,类似于在界面流动中观察到的粘性手指现象。虽然这些结果支持更令人侵略性的细胞迁移的观点,但它们还表明膜弹性,膜蛋白扩散性和流体粘度之间的强耦合。通过AIP发布发布。

著录项

  • 来源
    《Physics of fluids》 |2017年第10期|共16页
  • 作者单位

    Rutgers State Univ Mech &

    Aerosp Engn Dept Piscataway NJ 08854 USA;

    Rutgers State Univ Mech &

    Aerosp Engn Dept Piscataway NJ 08854 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号