...
首页> 外文期刊>Bulletin of the American Physical Society >APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - A computational model of amoeboid cell swimming in unbounded medium and through obstacles
【24h】

APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - A computational model of amoeboid cell swimming in unbounded medium and through obstacles

机译:APS-流体动力学APS部门第70届年会-事件-变形虫在无界介质中和通过障碍物游泳的计算模型

获取原文
           

摘要

Pseudopod-driven motility is commonly observed in eukaryotic cells. Pseudopodia are actin-rich protrusions of the cellular membrane which extend, bifurcate, and retract in cycles resulting in amoeboid locomotion. While actin-myosin interactions are responsible for pseudopod generation, cell deformability is crucial concerning pseudopod dynamics. Because pseudopodia are highly dynamic, cells are capable of deforming into complex shapes over time. Pseudopod-driven motility represents a multiscale and complex process, coupling cell deformation, protein biochemistry, and cytoplasmic and extracellular fluid motion. In this work, we present a 3D computational model of amoeboid cell swimming in an extracellular medium (ECM). The ECM is represented as a fluid medium with or without obstacles. The model integrates full cell deformation, a coarse-grain reaction-diffusion system for protein dynamics, and fluid interaction. Our model generates pseudopodia which bifurcate and retract, showing remarkable similarity to experimental observations. Influence of cell deformation, protein diffusivity and cytoplasmic viscosity on the swimming speed is analyzed in terms of altered pseudopod dynamics. Insights into the role of matrix porosity and obstacle size on cell motility are also provided.
机译:在真核细胞中通常观察到伪足驱动的运动。伪足是细胞膜的富含肌动蛋白的突出物,其以周期延伸,分叉和缩回,从而导致变形虫运动。虽然肌动蛋白-肌球蛋白相互作用负责假足的生成,但细胞变形能力对于假足的动力学至关重要。由于伪足高度动态,因此细胞能够随时间变形为复杂的形状。伪足驱动的运动代表了一个多尺度,复杂的过程,耦合了细胞变形,蛋白质生物化学以及细胞质和细胞外液运动。在这项工作中,我们提出了变形虫细胞在细胞外培养基(ECM)中游泳的3D计算模型。 ECM被表示为有或没有障碍物的流体介质。该模型集成了完整的细胞变形,用于蛋白质动力学的粗粒反应扩散系统以及流体相互作用。我们的模型产生假足,该假足分叉并缩回,显示出与实验观察结果非常相似。根据改变的伪足动力学分析了细胞变形,蛋白质扩散性和细胞质粘度对游泳速度的影响。还提供了对基质孔隙率和障碍物大小对细胞运动性的作用的见解。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号