首页> 外文期刊>Physics of fluids >Interaction between plasma synthetic jet and subsonic turbulent boundary layer
【24h】

Interaction between plasma synthetic jet and subsonic turbulent boundary layer

机译:等离子体合成射流与亚音速湍流边界层之间的相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U-infinity = 20 m/s) and the boundary layer thickness (delta(99) = 34.5 mm) at the location of interaction is 44 400. Alarge-volume (1696 mm(3)) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (T-jet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58 delta(99). Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ exhibits a prominent spatiotemporal behaviour. The residence time of the CVP is estimated as the jet duration time, while the maximum extent of the affected flow in the three coordinate directions (x, y, and z) is approximately 32D, 8.5D, and 10D, respectively. An extremely high level of turbulent kinetic energy production is shown in the jet shear-layer, front vortex ring, and CVP, of which the contribution of the streamwise Reynolds normal stress is dominant. Finally, a conceptual model of the interaction between the PSJ and the TBL is proposed. Published by AIP Publishing.
机译:本文通过Hotwire风速计和锁相颗粒成像速度研究了等离子体合成射流(PSJ)和亚音速湍流边界层(TBL)之间的相互作用。 PSJ与在1.7米长的方形风洞截面的平坦壁上形成的完全发育的湍流边界层相互作用。基于FreeStream速度(U-Infinity = 20 m / s)的雷诺数(U-Infinity = 20 m / s)和边界层厚度(Δ(99)= 34.5mm)在相互作用位置为44 400. Alarge-Clustry(1696毫米(3) )三电极等离子体合成射流促动器(PSJA)具有圆形出口孔(d = 2mm)的采用,以产生高速(92米/秒),短持续时间(T-喷射= 1毫秒)脉冲射流。横向流中所采用的PSJA的出口速度变化显示在静态条件下几乎相同。然而,从PSJ和TBL之间的相互作用发出的流动结构与在静止条件下观察到的内容显着不同。在中间XY平面(Z = 0 mm)中,喷发的喷射机身最初遵循伴随着形成独特的前涡旋环的壁正常轨迹。在三次对流时间缩放射流弯曲到交叉流程,从而将峰值穿透深度限制在大约0.58Δ(99)。归一化射流轨迹的比较表明PSJ的渗透能力小于具有相同动量流速的稳定喷射。在此之前的喷射递减,再循环区域在喷注装置本体的下风侧观察到的,第一经历膨胀,然后在区域中的收缩。在交叉流YZ平面中,在十字流中的射流的签名结构,反向旋转涡旋对(CVP),从外层传输到近壁区域的高动量流动,导致更饱示的速度曲线和边界层形状因子(1.3至1.2)下降。与稳定的喷射相比,PSJ产生的CVP表现出突出的时空行为。 CVP的停留时间估计为喷射持续时间,而三个坐标方向(x,y和z)中受影响流的最大程度分别为约32d,8.5d和10d。在喷射剪切层,前涡旋环和CVP中示出了极高的湍流动能生产,其中流动雷诺正常应力的贡献是显性的。最后,提出了PSJ与TBL之间的相互作用的概念模型。通过AIP发布发布。

著录项

  • 来源
    《Physics of fluids》 |2017年第4期|共17页
  • 作者

    Zong Haohua; Kotsonis Marios;

  • 作者单位

    Delft Univ Technol Fac Aerosp Engn NL-2629 HS Delft Netherlands;

    Delft Univ Technol Fac Aerosp Engn NL-2629 HS Delft Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号