首页> 外文期刊>Physics of fluids >Mixed convection heat transfer enhancement in a cubic lid-driven cavity containing a rotating cylinder through the introduction of artificial roughness on the heated wall
【24h】

Mixed convection heat transfer enhancement in a cubic lid-driven cavity containing a rotating cylinder through the introduction of artificial roughness on the heated wall

机译:通过引入加热壁上的人工粗糙度,在立方盖驱动腔中的混合对流传热增强。通过加热壁上的人工粗糙度

获取原文
获取原文并翻译 | 示例
       

摘要

The aim of the present numerical investigation is to comprehensively analyse and understand the heat transfer enhancement process using a roughened, heated bottom wall with two artificial rib types (R-s and R-c) due to unsteady mixed convection heat transfer in a 3D moving top wall enclosure that has a central rotating cylinder, and to compare these cases with the smooth bottomwall case. These different cases (roughened and smooth bottom walls) are considered at various clockwise and anticlockwise rotational speeds, -5 = Omega = 5, and Reynolds numbers of 5000 and 10 000. The top and bottom walls of the lid-driven cavity are differentially heated, whilst the remaining cavity walls are assumed to be stationary and adiabatic. A standard k-epsilon model for the Unsteady Reynolds-Averaged Navier-Stokes equations is used to deal with the turbulent flow. The heat transfer improvement is carefully considered and analysed through the detailed examinations of the flow and thermal fields, the turbulent kinetic energy, the mean velocity profiles, the wall shear stresses, and the local and average Nusselt numbers. It has been concluded that artificial roughness can strongly affect the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving the introduced artificial rips. Increasing the cylinder rotational speed or Reynolds number can enhance the heat transfer process, especially when the wall roughness exists. Published by AIP Publishing.
机译:目前的数值调查的目的是通过粗糙的,加热的底壁进行全面分析和理解具有两个人造肋型(RS和RC)的传热增强过程,由于3D移动顶壁外壳中的不稳定混合热传递,这是具有中央旋转气缸,并将这些情况与光滑的底墙壳进行比较。这些不同的情况(粗糙和光滑的底壁)以各种顺时针和逆锁旋转速度,-5 =ω= 5,以及5000和10000的雷诺数。盖子驱动的顶部和底壁腔体被差动加热,而剩余的腔壁被认为是静止的和绝热的。用于不稳定雷诺平均的Navier-Stokes方程的标准K-Epsilon模型用于处理湍流。通过对流动和热场的详细检查,湍流动能,平均速度轮廓,壁剪切应力和局部和平均露天数进行仔细考虑和分析传热改进。已经得出结论,人造粗糙度能够强烈影响热场和流体流动模式。最终,通过涉及引入的人造裂缝,传热速率显着增加。增加汽缸转速或雷诺数可以增强传热过程,尤其是当存在壁粗糙度时。通过AIP发布发布。

著录项

  • 来源
    《Physics of fluids》 |2018年第2期|共19页
  • 作者

    Kareem Ali Khaleel; Gao Shian;

  • 作者单位

    Univ Leicester Dept Engn Leicester LE1 7RH Leics England;

    Univ Leicester Dept Engn Leicester LE1 7RH Leics England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号