...
首页> 外文期刊>Physics of fluids >Shape induced segregation and anomalous particle transport under spherical confinement
【24h】

Shape induced segregation and anomalous particle transport under spherical confinement

机译:形状诱导球形监禁下的偏析和异常颗粒输送

获取原文
获取原文并翻译 | 示例
           

摘要

Colloidal or nanoparticle mobility under confinement is of central importance for a wide range of physical and biological processes. Here, we introduce a minimal model of particles in a hydrodynamic continuum to examine how particle shape and concentration affect the transport of particles in spherical confinement. Specifically, an immersed boundary-general geometry Ewald-like approach is adopted to simulate the dynamics of spheres and cylinders under the influence of short- and long-range fluctuating hydrodynamic interactions with appropriate non-slip conditions at the confining walls. An efficient O(N) parallel finite element algorithm is used, thereby allowing simulations at high concentrations, while a Chebyshev polynomial approximation is implemented in order to satisfy the fluctuation-dissipation theorem. A concentration-dependent anomalous diffusion is observed for suspended particles. It is found that introducing cylinders in a background of spheres, i.e., particles with a simple degree of anisotropy, has a pronounced influence on the structure and dynamics of the particles. First, increasing the fraction of cylinders induces a particle segregation effect, where spheres are pushed toward the wall and cylinders remain near the center of the cavity. This segregation leads to a lower mobility for the spheres relative to that encountered in a system of pure spheres at the same volume fraction. Second, the diffusive-to-anomalous transition and the degree of anomaly quantified by the power law exponent in the mean square displacement vs time relation both increase as the fraction of cylinders becomes larger. These findings are of relevance for studies of diffusion in the cytoplasm, where proteins exhibit a distribution of size and shapes that could lead to some of the effects identified in the simulations reported here.
机译:在限制下的胶体或纳米颗粒迁移率对于广泛的物理和生物过程具有核心重要性。这里,我们在流体动力连续核中引入最小的颗粒模型,以检查粒子形状和浓度如何影响球形监禁中的颗粒的运输。具体地,采用浸入的边界一般几何形状ewald样方法来模拟球体和圆柱体的动态,在短路和远程波动的流体动力相互作用的影响下与限制壁的适当防滑条件的影响。使用有效的O(n)并行有限元算法,从而允许在高浓度下模拟,而切卵艇的多项式近似以满足波动耗散定理。对于悬浮颗粒,观察到浓度依赖性异常扩散。结果发现,在球形的背景下引入圆柱体,即具有简单各向异性程度的颗粒,对颗粒的结构和动力学具有明显的影响。首先,增加汽缸的级分导致颗粒隔离效果,其中球形朝向壁和圆柱体靠近腔的中心。该隔离导致球体相对于在相同体积分数的纯球系统中遇到的球体的较低迁移率。其次,随着圆柱体的一部分变大,通过电力法指数在平均方形位移与时间关系中的幂律指数量化的扩散到异常转变和异常程度。这些发现与细胞质中扩散的研究有关,其中蛋白质表现出尺寸和形状的分布,这可能导致在此报告的模拟中鉴定的一些效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号