首页> 外文期刊>Physics of fluids >Simplified and highly stable thermal Lattice Boltzmann method simulation of hybrid nanofluid thermal convection at high Rayleigh numbers
【24h】

Simplified and highly stable thermal Lattice Boltzmann method simulation of hybrid nanofluid thermal convection at high Rayleigh numbers

机译:高瑞利数杂交纳米流体热对流的简化且高度稳定的热晶格Boltzmann方法模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A new method called simplified and highly stable thermal lattice Boltzmann method, which is based on the lattice Boltzmann framework, was used to simulate the hybrid nanofluid natural convection and heat transfer in a square enclosure with a heating obstacle at high Rayleigh numbers. Four fins protrude from the heating obstacle to affect the flow pattern and heat transfer performance. The effects of the Rayleigh number (10(6) <= Ra <= 10(9)), nanoparticle volume fraction (0 <= phi <= 0.05), and length of the fin (0.1 <= h <= 0.3) on the flow pattern, temperature distribution, and heat transfer characteristics were illustrated and analyzed. To validate the present method, the benchmark simulation results were performed. Three kinds of flow patterns (steady symmetry, unsteady symmetry, and unsteady asymmetry) can be identified at various Rayleigh numbers. At different lengths of fins, the critical Rayleigh number of flow pattern transition (from steady symmetry to steady asymmetry and from steady asymmetry to unsteady asymmetry) is different. phi and h also significantly affect the flow pattern. At higher phi,the flow inside the enclosure is steadier and the effect of h on the flow pattern varies at different Ra. Published under license by AIP Publishing.
机译:一个称为简化和高度稳定的热格子Boltzmann方法新方法,它是基于格子Boltzmann框架,被用来模拟在方形外壳在高瑞利数的混合纳米流体自然对流和热传递用加热障碍。四个翅片从加热障碍物突出以影响流动模式和传热性能。瑞利数的(10(6)<=太阳神<= 10(9)),纳米颗粒体积分数(0 <=披<= 0.05)的影响,和散热片的长度(0.1 <= H <= 0.3)上的流动模式,温度分布,和传热特性进行说明和分析。为了验证本发明的方法,进行了基准仿真结果。三种流型(稳定对称性,非定常对称性,非稳态不对称性)可以在不同的瑞利号标识。在散热片的长度不同,流型转变的临界瑞利数(从稳定对称性稳定不对称,从稳态不对称性不稳定不对称)是不同的。披和h也显著影响流动模式。在较高的PHI,所述外壳内的流动是稳定的和对流动图案小时效应在不同太阳神变化。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Physics of fluids》 |2020年第1期|共12页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号