...
首页> 外文期刊>Physics of fluids >Numerical study of a bubble driven micromixer based on thermal inkjet technology
【24h】

Numerical study of a bubble driven micromixer based on thermal inkjet technology

机译:基于热喷墨技术的气泡驱动微混合器的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

An efficient microfluidic mixing approach utilizing the periodic explosive boiling mechanism from the thermal inkjet technology is proposed in this work. The main purpose of the work is to examine the effect of the configuration of thin-film microheaters on the mixing performance of the simple Y-microchannel via numerical simulations. The proposed micromixer can drive the mixing flow without an external pump because the repeated growth-collapse cycles of the vapor bubble result in a pumping effect in the microchannel. The adaptive Cartesian grid based finite-volume method is employed to solve the Navier-Stokes equations with the volume-of-fluid method for tracking the vapor-liquid interface. The complex dynamics of the vapor bubble induced by pulse heating is simplified as a gas polytropic expansion/compression process. Four microheater configurations are examined with the proposed numerical method. Our results have shown that mixing is limited for the microheater placed symmetrically along the center plane of the downstream branch of the Y-micromixer. However, for the asymmetrically placed microheater, mixing is greatly improved due to the secondary crossflow and asymmetric vortex created by the bubble collapse. When two off-centered microheaters are used and fired alternately, the mixing performance is further enhanced by disturbing the flow in a wiggling manner. Finally, when the microheaters are placed in the inlet channels instead of the downstream channel, periodic alternate switching of inlet flows due to the bubble actuation can effectively segment the mixing species, which results in the highest mixing index of 0.956 among all four configurations. The proposed micromixer shows great promise in the microfluidic mixing applications due to its simplicity and high efficiency.
机译:在这项工作中提出了一种利用热喷墨技术的周期性爆炸沸腾机构的有效的微流体混合方法。该工作的主要目的是检查薄膜微热器结构对通过数值模拟的简单Y-MicroChannel的混合性能的影响。所提出的微混合器可以驱动没有外部泵的混合流,因为蒸汽泡的重复生长崩溃循环导致微通道中的泵送效果。采用自适应笛卡尔栅格的有限体积法,以利用用于跟踪蒸汽界面的流体体积方法来解决Navier-Stokes方程。由脉冲加热引起的蒸汽泡的复杂动态被简化为气体多细胞膨胀/压缩过程。用所提出的数值方法检查四种微热器配置。我们的结果表明,沿着Y型微混合器的下游分支的中心平面对称放置的微热器的混合限制。然而,对于不对称放置的微热器,由于泡泡坍塌产生的次级交叉流出和不对称涡流,混合大大提高。当使用两个离心微热器交替使用并烧制时,通过以摆动方式扰乱流动,进一步增强混合性能。最后,当微热器被放置在入口通道中而不是下游通道时,由于气泡致动而导致的入口流的周期性交替切换可以有效地分段,这导致所有四种配置中的最高混合指数为0.956。由于其简单性和高效率,所提出的微混合器在微流体混合应用中显示出很大的通知。

著录项

  • 来源
    《Physics of fluids》 |2019年第6期|共17页
  • 作者

    Tan Hua;

  • 作者单位

    Washington State Univ Sch Engn &

    Comp Sci 14204 NE Salmon Creek Ave Vancouver WA 98686 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号