首页> 外文期刊>Physics of fluids >Experimental investigation of liquid film cooling in hypersonic flow
【24h】

Experimental investigation of liquid film cooling in hypersonic flow

机译:超声波流动液膜冷却的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Film cooling is generally considered as a promising active cooling technology for developing thermal protection systems of hypersonic vehicles; however, most of experimental and numerical studies of film cooling mainly concentrated on gaseous film cooling. Since the phase change of liquid coolants can absorb a large amount of latent heat, liquid film cooling should have more potential advantages, especially for severe environments accompanied by hypersonic flight To address this issue, the film cooling using water as a coolant was experimentally investigated in hypersonic flow. Experiments were carried out in a detonation tunnel, at a hypersonic Mach number of 6 using a 25 degrees apex-angle wedge. Characteristic physical quantities, such as surface temperature rise, shock wave structure, film thickness, and cover area, are measured by thermocouples, schlieren, and a specially devised liquid film measurement system. The experimental results verify that the liquid film cooling is feasible in hypersonic flow and also indicate that it is featured with maintaining aerodynamic performances due to the weak effect on the main flow caused by coolant injection. Inspired by these results, liquid film flow characteristics and its influencing factors including mass flow rate, dynamic pressure, coolant injection direction, and surface tension are investigated to guide the design of a thermal protection system. Published under license by AIP Publishing.
机译:薄膜冷却通常被认为是用于开发超声波车辆的热保护系统的有希望的主动冷却技术;然而,薄膜冷却的大多数实验性和数值研究主要集中在气态膜冷却上。由于液体冷却剂的相变可以吸收大量的潜热,因此液体薄膜冷却应具有更大的潜在优势,特别是对于伴随过高度飞行来解决这个问题的严重环境,通过实验研究了使用水的薄膜冷却。超声波流动。在爆炸隧道中进行实验,使用25度的顶点角楔在6的超声波马赫数。通过热电偶,Schlieren和专门设计的液膜测量系统测量特征物理量,例如表面温度上升,冲击波结构,薄膜厚度和覆盖区域。实验结果验证了液体膜冷却在过度流动中是可行的,并且还表明由于对由冷却剂注入引起的主要流动的效果薄弱,它具有维持空气动力学性能。通过这些结果的启发,研究了液体薄膜流动特性及其影响因素,包括质量流量,动压,冷却剂注入方向和表面张力,以引导热保护系统的设计。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Physics of fluids》 |2019年第4期|共10页
  • 作者单位

    Chinese Acad Sci Inst Mech State Key Lab High Temp Gas Dynam Beijing 100190 Peoples R China;

    Chinese Acad Sci Inst Mech State Key Lab High Temp Gas Dynam Beijing 100190 Peoples R China;

    Chinese Acad Sci Inst Mech State Key Lab High Temp Gas Dynam Beijing 100190 Peoples R China;

    Chinese Acad Sci Inst Mech State Key Lab High Temp Gas Dynam Beijing 100190 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号