...
首页> 外文期刊>Physica, C. Superconductivity and its applications >Investigation on the thermohydraulic performance of high temperature superconducting (HTS) cables with heat loads using Entropy Generation Minimization (EGM) approach
【24h】

Investigation on the thermohydraulic performance of high temperature superconducting (HTS) cables with heat loads using Entropy Generation Minimization (EGM) approach

机译:使用熵产生最小化(EGM)方法对热负荷高温超导(HTS)电缆热液压性能的研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High temperature superconducting (HTS) cables have revolutionized the way of power transmission in terms of carrying larger currents with lower volume of the conductor. However, such cables experience AC losses which are dissipated as heat. Hence, it is inevitable that these cables be cooled below the critical temperature of the superconductor constituting the HTS cable. In general, LN2 is circulated through the former (corrugated pipe) to retain the superconductivity of HTS tapes. The work consumed for pumping LN2 through long length HTS cables is significantly larger. Hence, it is necessary that the optimization of the pumping power with enhanced heat transfer is achieved. During the process of forced cooling of HTS cables, velocity and thermal gradients which are responsible for entropy generation is unavoidable. Hence, in the present work, an investigation on thermo-hydraulic performance in HTS cables with various heat loads is performed. Further, the volumetric rate of entropy generation is calculated and an optimum mass flow rate is identified at which minimum entropy generation rate is observed. The thermo-hydraulic performance and total entropy generation rate for internally cooled HTS cables are computationally investigated using the time averaged Reynolds Averaged Navier-Stokes (BANS) equations implemented in commercial software ANSYS (R). This implementation involves Finite Volume Method (FVM) of discretization with kappa - epsilon turbulence equations as closure to the BANS governing equations. Temperature dependent thermo-physical properties are considered for predicting the thermo-hydraulic behavior of LN2 in HTS cable. The analysis is carried out at heat loads ranging from 1-3 W/m with flow rates of 11-20 L/min at an operating temperature of 77 K and pressure of 2.7 bar. The dimensionless numbers such as Bejan number, entropy generation number and performance evaluation are studied to evaluate the optimum flow rate corresponding to lower pumping power and higher cooling capacity at various heat loads. Further, the results obtained from computational simulations are validated with the experimental results available in the literature. Furthermore, the results of volumetric entropy generation rate (EGR) are calculated to optimize the thermo-hydraulic performance in HTS cables using entropy generation minimization (EGM) approach.
机译:高温超导(HTS)电缆已经彻底改变了具有较大电流的动力传递方式,具有较低的导体。然而,这种电缆体验了作为热量消散的交流损耗。因此,这是不可避免的,即这些电缆低于构成HTS电缆的超导体的临界温度。通常,LN2通过前者(波纹管)循环以保持HTS胶带的超导性。通过长长度HTS电缆泵送LN2的工作明显更大。因此,实现了具有增强的传热的泵送功率的优化。在强制冷却HTS电缆的过程中,对熵产生的速度和热梯度是不可避免的。因此,在本作工作中,执行具有各种热负荷的HTS电缆中热液压性能的研究。此外,计算熵生成的体积速率,并识别出最小的质量流量,在此观察到最小熵产生率。使用商业软件ANSYS(R)实现的时间平均雷诺平均雷诺平均雷诺(BANS)方程来计算用于内部冷却HTS电缆的热液压性能和总熵生成速率。该实施涉及与Kappa - epsilon湍流方程的离散化的有限体积法(FVM)作为闭合禁止控制方程。温度依赖性热物理性质被认为是为了预测HTS电缆中LN2的热液压行为。分析在加热负荷下进行,在1-3W / m的过程中,流速为11-20升/分钟,在77k和2.7巴的压力下。研究了诸如Bejan号,熵生成数和性能评估之类的无量纲数字,以评估与各种热负荷下较低的泵送功率和更高的冷却能力相对应的最佳流速。此外,从计算模拟中获得的结果被文献中可获得的实验结果验证。此外,计算体积熵产生率(EGR)的结果,以优化使用熵产生最小化(EGM)方法HTS电缆中的热液压性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号