...
首页> 外文期刊>Physica, B. Condensed Matter >The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel
【24h】

The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel

机译:水/ FMWNT纳米流体流动和落后承包通道中热传递的数值模拟

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the study of rheological behavior and heat transfer of nanofluids in the industrial equipment has become widespread among the researchers and their results have led to great advancements in this field. In present study, the laminar flow and heat transfer of water/functional multi-walled carbon nanotube nanofluid have been numerically investigated in weight percentages of 0.00, 0.12 and 0.25 and Reynolds numbers of 1-150 by using finite volume method (FVM). The analyzed geometry is a two-dimensional backward-facing contracting channel and the effects of various weight percentages and Reynolds numbers have been studied in the supposed geometry. The results have been interpreted as the figures of Nusselt number, friction coefficient, pressure drop, velocity contours and static temperature. The results of this research indicate that, the enhancement of Reynolds number or weight percentage of nanoparticles causes the reduction of surface temperature and the enhancement of heat transfer coefficient. By increasing Reynolds number, the axial velocity enhances, causing the enhancement of momentum. By increasing fluid momentum at the beginning of channel, especially in areas close to the upper wall, the axial velocity reduces and the possibility of vortex generation increases. The mentioned behavior causes a great enhancement in velocity gradients and pressure drop at the inlet of channel. Also, in these areas, Nusselt number and local friction coefficient figures have a relative decline, which is due to the sudden reduction of velocity. In general, by increasing the mass fraction of solid nanoparticles, the average Nusselt number increases and in Reynolds number of 150, the enhancement of pumping power and pressure drop does not cause any significant changes. This behavior is an important advantage of choosing nanofluid which causes the enhancement of thermal efficiency.
机译:近年来,工业设备中纳米流域的流变行为和热传递研究已经普遍存在研究人员中,其结果导致了这一领域的巨大进步。在目前的研究中,通过使用有限体积法(FVM),在0.00,0.12和0.25的重量百分比的0.00,0.12和0.25的重量百分比和雷诺数为0.00,0.12和0.25和1-150的重量百分比的下层流体和传热。分析的几何形状是在假定的几何形状中研究了两维背面的收缩通道,并且已经在假定的几何形状中研究了各种重量百分比和雷诺数的效果。结果已被解释为豆浆数,摩擦系数,压降,速度轮廓和静温度的图。该研究的结果表明,纳米颗粒的雷诺数或重量百分比的增强导致表面温度的降低和传热系数的增强。通过增加雷诺数,轴向速度增强,导致动量的增强。通过增加通道开始时的流体动量,特别是在靠近上壁的区域,轴向速度降低,并且涡流产生的可能性增加。所提到的行为导致通道入口处的速度梯度和压降巨大增强。而且,在这些区域中,篮板号和局部摩擦系数数字具有相对下降,这是由于速度突然降低。通常,通过增加固体纳米颗粒的质量分数,平均露珠数增加,在雷诺数150中,泵送电源和压降的增强不会引起任何显着的变化。这种行为是选择纳米流体的重要优势,这导致提高热效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号