首页> 外文期刊>Physical chemistry chemical physics: PCCP >Crystal phase transition of urea: what governs the reaction kinetics in molecular crystal phase transitions
【24h】

Crystal phase transition of urea: what governs the reaction kinetics in molecular crystal phase transitions

机译:尿素的晶相转变:什么治理分子晶阶段转变中的反应动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Because of their weak intermolecular forces and flexible molecular geometry, molecular crystals are renowned for their structural versatility (polymorphism) and the great difficulty in controlling the crystal form during synthesis. Despite its great importance in determining the final solid form (e.g. single crystal, polycrystal or amorphous), the kinetics of the crystal-to-crystal transformation between structures with different molecular packing has long been a fundamental challenge in both measurement and simulation. Here we report the first global potential energy surface (PES) for urea crystals obtained by stochastic surface walking global PES exploration. With the big data from thousands of crystal/ amorphous forms, we, using exhaustive reaction pathway sampling, resolve the solid-to-solid transformation pathways between urea crystals from first principles. We demonstrate that the strong tendency to grow a large single crystal of urea can be attributed to the flat PES between major crystal forms that share the same hydrogen-bonding network pattern, where one crystal can transform to another facilely via crystal-to-crystal transition. Other crystal forms with distinct hydrogen-bonding network patterns can be excluded in crystallization due to their poor thermodynamic stability and high barrier of solid-to-solid transition. A general theory for predicting molecular solid transformation is proposed and illustrated in a simplified one-dimensional global PES, which is now obtainable from computational techniques established here.
机译:由于它们的分子间力弱和柔性分子几何形状,所以分子晶体以其结构通用(多态性)而闻名,并且在合成期间控制晶体形式的巨大困难。尽管在确定最终的固体形式(例如,单晶,多晶或无定形)方面,但在不同分子包装之间的结构之间的晶体到晶体变换的动力学在测量和模拟中具有很大的挑战。在这里,我们报告了通过随机表面行走全球PES探索获得的尿素晶体的第一个全球潜在能量表面(PES)。随着来自数千种晶体/无定形形式的大数据,我们使用详尽的反应途径采样,解决了来自第一原理的尿素晶体之间的固体转化途径。我们表明,生长大单晶的尿素晶体的强烈倾向可以归因于共享相同的氢键网络图案的主要晶体形式之间的扁平PE,其中一个晶体可以通过晶体到晶体过渡变换到另一个晶体。由于其热力学稳定性差和固体转变的高屏障,可以排除具有不同氢键网络图案的其他具有不同氢键网络图案的晶体形式。提出了一种预测分子固体变换的一般理论,并以简化的一维全局PE示出,现在可以从这里建立的计算技术获得。

著录项

  • 来源
  • 作者单位

    Fudan Univ Shanghai Key Lab Mol Catalysis &

    Innovat Mat Collaborat Innovat Ctr Chem Energy Mat Key Lab Computat Phys Sci Minist Educ Dept Chem Shanghai 200433 Peoples R China;

    Fudan Univ Shanghai Key Lab Mol Catalysis &

    Innovat Mat Collaborat Innovat Ctr Chem Energy Mat Key Lab Computat Phys Sci Minist Educ Dept Chem Shanghai 200433 Peoples R China;

    Fudan Univ Shanghai Key Lab Mol Catalysis &

    Innovat Mat Collaborat Innovat Ctr Chem Energy Mat Key Lab Computat Phys Sci Minist Educ Dept Chem Shanghai 200433 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号