首页> 外文期刊>Physical chemistry chemical physics: PCCP >Molecular attochemistry in non-polar liquid environments: ultrafast charge migration dynamics through gold-thiolate and gold-selenolate linkages
【24h】

Molecular attochemistry in non-polar liquid environments: ultrafast charge migration dynamics through gold-thiolate and gold-selenolate linkages

机译:非极性液体环境中的分子依易化学:超快电荷迁移动态通过金 - 硫醇盐和金 - 硒醇键

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular attosecond science has already started contributing to our fundamental understanding of ultrafast purely electron dynamics in isolated molecules under vacuum. Extending attosecond science to the liquid phase is expected to offer new insight into the influence of a surrounding solvent environment on the attosecond electron dynamics in solvated molecules. A systematic theoretical investigation of the attochemistry of solvated molecules would help one design attosecond experiments under ambient conditions to explore the attochemistry in a liquid environment. With this goal in mind, for the first time, we have explored the attochemistry of molecules surrounded by different non-polar solvent environments. For this work, we have focused on the attosecond charge conduction through gold-thiolate and gold-selenolate linkages following the vertical ionization of the S/Se(CH3)-CH2-phenyl-X unit anchored to a gold dimeric cluster (Au-2), where X represents either a strong electron donating N(CH3)(2) group or a strong electron withdrawing NO2 group. To model solvation effects on the attochemistry of molecules containing gold-chalcogen linkages, we have used an implicit solvent model (Polarizable Continuum Model) under the density functional theory (DFT) formalism for non-polar solvents. We have found that the charge migration time scale in molecules becomes faster in the presence of the solvent environment as compared to that under vacuum. Charge oscillation does not damp quickly in molecules surrounded by the solvent environment as compared to that under vacuum. Furthermore, the direction of the charge migration may change in molecules when they are surrounded by the solvent environment as compared to that under vacuum. Thus, the present work has laid the foundation, for the first time, for thinking of the attochemistry into the realm of liquids.
机译:分子AtosoSecond Science已经开始有助于我们对真空分离分子中超快纯电子动力学的基本理解。预计将持有的竞争科学延长至液相,以便对溶剂化分子中的邻近溶剂环境对围绕溶剂环境的影响提供新的洞察。对溶剂化分子腐蚀性的系统理论研究将在环境条件下有助于一种设计attosecond实验,以探讨液体环境中的替补。有了这一目标,我们首次探索了不同的非极性溶剂环境包围的分子的替补。对于这项工作,我们专注于通过金子硫醇酸酯和金 - 硒固盐的依次锚定的硅硫醇酸酯和金 - 硒醇键,锚定为金二聚体簇(Au-2 ),其中X表示强电子提供N(CH3)(2)组或强电子抽出的NO2组。为了模拟含有金子硫溶胶的分子酸化学的溶剂化效应,我们在密度函数理论(DFT)形式中使用隐式溶剂模型(可极化连续体模型),用于非极性溶剂。我们发现,与真空下方相比,分子中分子中的电荷迁移时间标度变得更快。与真空下方相比,电荷振荡不会在溶剂环境包围的分子中快速抑制。此外,与真空下方被溶剂环境包围时,电荷迁移的方向可能在分子中变化。因此,目前的工作首次奠定了基础,以思考替补进入液体领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号